Тот, кто мыслит категориями теории вероятностей, добросовестно использует в работе возможности, связанные с «рассчитанным риском». Он не побоится пойти на разумный риск. С другой стороны, он не обманывает самого себя и других, делая вид, что в работе его нет никакого риска. Он отдает себе полный отчет в степени риска и заранее намечает, что следует предпринять, если имевшиеся опасения подтвердятся на практике. Располагая самым небольшим минимумом знаний в статистике, он может с большой пользой для дела приблизительно определить степень риска.
Человек, мыслящий с учетом требований теории вероятностей, поймет, что все время случаются совершенно невероятные явления. При игре в бридж, как подсчитал Уивер [72J, вероятность получения при следующей сдаче именно тех карт, которые оказались у вас на руках сейчас, составляет 1: 635 013 599 600. Такова же вероятность получения как посредственных карт, так и карт, состоящих целиком из козырей. Скэрн [71] об этом пишет так:
«Прежде всего обнаруживается, что тот факт, что вам вчера поразительно везло при игре в карты… не является таким уж удивительным явлением. При игре в крэпс игрок, поставивший на двух тузов и полагающий, что вероятность появления этих карт при следующей сдаче равна 1: 30, считает себя счастливчиком, если два туза появлялись подряд при четырех сдачах, и он делал ставку на них все четыре раза. Он счел бы себя еще более удачливым, если бы узнал, что вероятность такой сдачи равна 1: 1 679 615… Игроки забывают, что эта степень вероятности выхода данных карт в среднем составляет один раз на 1 679 615 сдач. Они забывают, что в тот вечер, когда несколько раз подряд вышла пара тузов, одновременно проходили тысячи других игр в крэпс и карты сдавались несколько миллионов раз. Более удивительным было бы положение, при котором в какой-нибудь игре не вышла бы пара тузов четыре раза подряд. Тот факт, что эта удача выпала на вашу долю, означает только, что вы принимали участие именно в этой игре».
Офицер информации, интересующийся теорией вероятностей, поступит правильно, прочитав небольшую статью Уивера [72], озаглавленную «Вероятность, редкость, интерес, удивление». Прочитав статью, разведчик поймет, почему Уивер противопоставляет стоящие в заголовке слова друг другу. Он пишет:
«Все ученые должны интересоваться вероятными явлениями; отнюдь не редко и, безусловно, с удивлением мы обнаруживаем ученых, которых удивляет тот факт, что невероятные явления имеют место. Ученые всегда вправе интересоваться такими явлениями, но лишь в редких случаях эти явления должны вызывать у них удивление».
В приведенных выше примерах речь шла о единичных явлениях. При сравнительном изучении двух рядов величин можно высчитать коэффициент корреляции между ними.
Например, на свободном рынке обычно наблюдается большая степень корреляции между размером урожая и рыночными ценами на соответствующую продукцию сельского хозяйства. Часто корреляция привлекает наше внимание к причинно-следственным связям, существующим между изучаемыми двумя рядами величин. В области естественных и общественных наук установление существенной корреляции часто заставляет нас искать возможные связи между явлениями, которые в противном случае могли остаться незамеченными. Это особенно характерно для информационной работы.
С точки зрения разведки весьма близким к корреляции является положение, при котором несколько отдельных явлений весьма точно совпадают во времени. Например, у человека, остановившегося в гостинице, когда он спал, украли пять тысяч долларов. Вскоре после этого случая один из ночных сторожей гостиницы уплатил по закладной за свой дом и начал сорить деньгами. Здесь действуют в соответствии с давно известным принципом: Post hoc, ergo propter hoc («После этого — следовательно, вследствие этого»). Необходимо уяснить, какое значение имеет этот принцип.
Описанные нами три случая в равной мере могут привлечь внимание офицера информации и даже вызвать у него определенные сомнения. Вот эти три случая:
1) корреляция двух рядов событий;
2) совпадение во времени двух или нескольких событий;
3) случай, когда имеет место событие, которое a priori рассматривается как весьма невероятное (как в приведенном примере с картами, сдаваемыми при игре в бридж).
В каждом из трех случаев, естественно, могут иметь место или же могут быть придуманы самые нелепые корреляции. Так, Сэржент [78] пишет, что в северном полушарии существует обратная корреляция между среднемесячной температурой воздуха и количеством букв в названии месяца. Месяцы, содержащие много букв в названии, — декабрь, январь и февраль — холодные. Месяцы с короткими названиями — май, июнь, июль — жаркие. В жизни имеется бессчисленное количество забавных» но бессмысленных случаев корреляций и совпадений.
Корреляция, совпадение или необычное явление сами по себе ничего не доказывают, но они могут
Уайтхед [91] пишет:
«Самая распространенная ошибка связана с предположением о том, что в случае, когда проведены длительные и точные математические вычисления, можно с полной уверенностью считать результаты этих вычислений применимыми к какому-либо явлению природы».
Таким образом, офицер информации, знакомый с теорией вероятностей, правильно оценивает корреляции с высоким коэффициентом и в высшей степени необычные явления. Он знает, как извлечь ту пользу, которая может в них заключаться. Если данные явления представляют интерес
Любой группе однородных измеримых величин, таких, например, как рост людей, коэффициент умственного развития, размер заработной платы, свойственно явление дисперсии: некоторые люди имеют высокий рост, другие низкий. Часто мы обнаруживаем, что наряду с существованием отдельных очень низких людей рост подавляющего большинства составляет примерно 1
Человеку, мыслящему с учетом теории вероятностей, даже если он не знает высшей математики, знакома «кривая нормального распределения», изображенная на рис. 5. На этом рисунке отражена относительная частота повторяемости определенного роста, коэффициента умственного развития и размера заработной платы для любой данной группы явлений. Результаты широкого исследования группы однородных явлений, проведенного выборочным методом, должны графически выразиться в виде кривой,