вероятность успеха меняется не с каждым следующим шагом, а лишь с накоплением богатства, Артур предложил такие модели, как процесс Пойа (американского математика венгерского происхождения), с которым очень трудно работать математическими методами, но который легко понять с помощью симулятора Монте-Карло. Процесс Пойа можно описать следующим образом: представьте урну, изначально содержащую равное количество черных и красных шаров. При каждой попытке, еще до того, как вы ее сделаете, вам нужно угадать, шар какого цвета вы вытащите. Вот так устроена игра. В отличие от обычной урны вероятность угадать связана с успехами в прошлом, поскольку вы угадываете лучше или хуже в зависимости от достигнутых результатов. То есть вероятность победы увеличивается с ростом количества прошлых побед, а неудач — с ростом количества поражений. Моделируя такой процесс, можно увидеть огромный разброс исходов — от ошеломляюще успешных до совсем неудачных (мы называем это «перекосом»).
Сравните такой процесс с тем, который моделируется чаще, то есть с урной, из которой игрок достает шары с замещением. Скажем, вы играете в рулетку и выигрываете. Увеличивает ли это ваши шансы на выигрыш? Нет. А в процессе Поля — да. Почему его трудно описать математически? Из-за нарушения предположения о независимости (то есть положения, когда следующая попытка не зависит от предыдущей). Для работы с (имеющимся) математическим аппаратом вероятности требуется независимость.
Что пошло не так с развитием экономики как науки? Ответ: была группа умных людей, почувствовавших потребность использовать методы математики только для того, чтобы показать: они мыслят строго, они занимаются наукой. Кто-то спешно решил ввести в нее методы экономического моделирования (обвиняемые — Леон Вальрас, Жерар Дебре, Пол Самуэльсон), не понимая того факта, что либо уровень математики, которым они пользовались, был слишком ограниченным для класса проблем, с которыми они имели дело, либо, возможно, им следовало знать, что точность математического языка может заставить людей поверить в существование решений, которых на самом деле нет (вспомните Поппера и цену слишком серьезного отношения к науке). На самом деле математика, с которой они работали, не подходит для реального мира, может, потому, что нам нужен более богатый набор процессов. Но они отказывались признать, что, возможно, тогда лучше вообще обойтись без математики.
На помощь пришла так называемая теория сложности. Большой интерес вызвали работы ученых, специализировавшихся на нелинейных количественных методах, Меккой которых был институт Санта-Фе близ города Санта-Фе в штате Нью-Мексико (США). Понятно, что эти ученые много работали и обеспечили нас превосходными решениями в физике и лучшими моделями в социальных областях (хотя и не полностью удовлетворительными). И если они и не добились окончательного успеха, то просто потому, что математика играет в реальном мире второстепенную роль. Заметьте, что еще одним преимуществом симуляций методом Монте-Карло является возможность получить результат там, где математики сдаются и не могут нам помочь. Освобождая нас от уравнений, этот метод освобождает нас из ловушки подчинения математике. Как я сказал в третьей главе, в нашем мире случайности математика — лишь способ думать и размышлять, не более.
Наука о сетях
Изучение динамики сетей в последнее время растет как на дрожжах. Оно стало популярным после книги Малкольма Гладуэлла «Переломный момент»[46], в которой автор показывает, как поведение некоторых переменных величин, например эпидемий, чрезвычайно быстро расширяется после прохождения некоторого неопределенного критического уровня. (Как, скажем, любовь к кедам детей из бедных кварталов или распространение религиозных идей. При продаже книг наблюдается тот же эффект, она испытывает «взрывной» рост, как только передача информации о книге из уст в уста достигает определенного уровня.) Почему некоторые идеологии или религии расширяются, как пожар, а другие быстро угасают? Как появляются массовые увлечения? Как распространяются вирусы идей? Как только уходишь от конвенциональных моделей случайности («колоколообразное» семейство графиков), может произойти что-то серьезное. Почему у интернет-портала Google так много посетителей по сравнению с сайтом Национальной ассоциации ветеранов химической промышленности? Чем больше людей присоединилось к сети, тем выше вероятность, что кто-то еще услышит и присоединится, особенно если нет реальных ограничений на ее емкость. Обратите внимание, что иногда глупо искать точную «критическую точку», поскольку она нестабильна, узнать о ней невозможно, разве что постфактум, что часто и происходит. Может, эти «критические точки» не совсем точки, а последовательности (так называемый степенной закон Парето)? Хотя ясно, что мир производит кластеры, печально то, что их бывает слишком трудно предсказать (разве что в физике), чтобы принимать эти модели всерьез. И снова важным является знание о существовании нелинейности, а не попытки смоделировать ее. Ценность работы великого Бенуа Мандельброта во многом состоит в том, что он рассказал нам о «диком» виде случайности, о котором мы всегда будем знать мало (благодаря его нестабильным свойствам).
Наш мозг
Наш мозг не готов к нелинейности. Люди думают, что если, скажем, две переменные связаны причинно-следственной связью, тогда одно и то же изменение одной из них
Буриданов осел, или На светлой стороне случайности
Нелинейность случайных исходов иногда используется как средство для выхода из патовых ситуаций. Рассмотрим проблему нелинейного толчка. Представьте осла, одинаково страдающего от сильного голода и жажды, который находится на абсолютно равном расстоянии от источников пищи и воды. В таких условиях он умер бы от голода и жажды, поскольку не смог бы решить, куда направиться раньше. Теперь добавьте в картину случайность, подтолкнув осла так, что он окажется ближе к чему-то одному, к воде или пище, неважно, и, соответственно, дальше от другого. Будет мгновенно найден выход из тупика, и наш счастливый осел окажется или вначале хорошенько накормлен, а потом напоен, или вначале хорошенько напоен, а потом накормлен.
Читатель наверняка попадал в положение, напоминающее положение буриданова осла, и подбрасывал монету, чтобы разрешить некоторые патовые ситуации в жизни, позволив случайности помочь вам. Дайте госпоже Удаче принять решение и радостно подчинитесь ему. Я часто пользуюсь буридановым ослом (под его математическим именем), когда компьютер «зависает» между двумя возможностями (говоря технически, такую «рандомизацию» часто применяют в ходе решения задач оптимизации, когда нужно вызвать возмущение функции).
К слову, буриданов осел назван в честь философа Жана Буридана, жившего в XIV веке. Буридан умер интересной смертью — его бросили в Сену зашитым в мешок, и он утонул. Современники, просмотревшие рождение рандомизации, считали эту историю софистикой. Буридан явно опередил свое время.
Когда я писал эти строки, то внезапно понял, что биполярность мира очень сильно сказывается на мне. Или человек невероятно успешен и забирает всю наличность, или не может заработать ни пенни.