Крайне малые размеры ДНК не позволяют увидеть ее. Вот почему для некоторых она предстает сугубо отвлеченным понятием, а не действительно существующей молекулой. Лучшему пониманию ДНК может помочь собственноручная сборка ее физической модели.
Детские конструкторы прекрасно подходят для сборки моделей молекул, включая ДНК. Один из авторов этой книги (Артур Уиггинз) воспользовался набором конструктора K'NEX для сборки модели ДНК, которую на рис. I.4 держат в руках дети, помогавшие ему в этом деле.

Данная модель собрана на основе набора K'NEX 32 Model Building Set в коробке Blue Value Tub (34006), который можно приобрести за 30 или 40 долларов (см.
По завершении работы вы получите часть молекулы ДНК, содержащую 48 пар оснований. В длину она составит около 1 м.
Получившаяся модель немного отличается от настоящей ДНК. В модели каждый синий стержень находится под углом 20° к предыдущему стержню, тогда как водородные связи в настоящей ДНК параллельны в пределах 6°. Однако модель показывает отдельные повороты спирали, большую и маленькую бороздки и парные основания А — Т и Ц — Г Уотсона — Крика.
При сборке данной модели вы сможете увидеть действие lac-оперона по расщеплению двух нитей ДНК в ходе репликации и работу рестрикционных ферментов, разрезающих ДНК в определенных местах благодаря «подгонке» этих ферментов к молекулам.
7. Кодоны
Почти все формы жизни на Земле используют один и тот же генетический код, ключом к которому служат кодоны. Если нуклеотидные основания в ДНК представить в виде букв генетического кода, то кодоны будут словами, а ген — последовательностью кодонов, образующих предложение. Согласно основному посылу (центральная догма) [занесенного] в ген выражения (экспрессии гена), сообщение от ДНК записывается на мРНК (матричную РНК), которое затем переносится на белки.
Для уяснения работы кодонов рассмотрим ее подробно.
♦ Последовательность содержащихся в ДНК нуклеотидных оснований задается чередованием аденина, тимина, цитозина и гуанина, обычно обозначаемых буквами А, Т, Ц и Г.
♦ мРНК переписывает нуклеотидные основания ДНК в том же порядке на рибосому, лишь заменив тимин на урацил. В рибосоме происходит сборка белков нанизыванием друг на друга аминокислот (см.: Список идей, 5. Аминокислоты). Порядок следования аминокислот в белке определяет тРНК (транспортная РНК), передающая исходный порядок следования нуклеотидных оснований в ДНК.
Но каким образом четыре нуклеотидных основания определяют, какую из 20 аминокислот необходимо брать при построении белка?
♦ Если бы каждое нуклеотидное основание задавало одну аминокислоту, можно было бы собрать лишь четыре аминокислоты.
♦ Если бы два нуклеотидных основания совместно задавали одну аминокислоту, выходило бы 42 = 16 аминокислот.
♦ Если бы три нуклеотидных основания совместно задавали одну аминокислоту, можно было бы получить 4
Троичная природа кодона нашла опытное подтверждение в 1961 году благодаря работе Фрэнсиса Крика.
Выяснением вопроса, какие триплеты нуклеотидных оснований определяют аминокислоты, занялся в 1961 году американский биохимик Маршалл Ниренберг, установивший, что УУУ кодирует аминокислоту фенилаланин.
Последующие опыты Ниренберга и других ученых к 1966 году помогли установить полное соответствие между кодонами и аминокислотами.
В таблицах приводятся трехбуквенные кодоны и соответствующие им аминокислоты, присоединяемые к выстраиваемой РНК белковой молекуле, а также нуклеотидные основания РНК (У, Ц, А и Г), а не ДНК (Т, Ц, А и Г). Инициирующий [АУГ или ГУ Г] и терминирующий [сокр. терм; это УАА (охра- кодон), УАГ (янтарь-кодон) и УГА (опал-кодон)] [трансляцию] кодоны указывают на начало и завершение транскрипции РНК.


Заметим, что большинство аминокислот задается не одним кодоном. Такая избыточность нередко означает, что одна и та же аминокислота задается независимо от того, какое азотистое основание находится на третьем месте в кодоне. Поскольку именно третье положение часто неверно считывается, подобная избыточность сводит к минимуму последствия от ошибок в считывании.
8. Укладка белков
Белки, плод усилий ДНК, РНК и белковых ферментов, несут на себе бремя жизни — в буквальном и переносном смысле. На два вида белков, из-за своего строения названных глобулярными [округлыми] и фибриллярными[38] [вытянутыми], возложены многочисленные обязанности:
♦
♦
♦
♦
♦
♦
Внешний облик белка имеет решающее значение при выполнении многих задач, и он далеко не прост. Если длинную нить аминокислот, составляющих белок, уподобить волокну, то функциональный облик белка можно уподобить замысловатой корзине, сплетенной из этого волокна.
Сложное, трехмерное устройство белков впервые заметили в 1930 — е годы, когда У. Т. Астбури получил различные рентгенограммы дифракционных полос натянутого человеческого волоса. Американский