Может показаться, что эти числа, которыми выражаются общие и равные друг другу нуклонные массы боковых частей и стандартных блоков МПП (то есть результат оцифровки продуктов кодирования), ничем не примечательны. Во всяком случае, они не имеют вида n111, который до сих пор привлекал наше внимание. Однако, номера нуклеотидов упорядоченных по нарастанию молекулярных масс C<T< A<G, то есть 1234(рациональность чего — для первых кодонных оснований — мы показали в Главе А), пермутированные в составе первых оснований, кодирующих МПП (3412), странным образом соответствуют нуклонным массам обеих частей этого пептида, выраженным в десятичной системе счисления: 3412=3412= 3412. В порядке ещё одного — математического — курьеза отметим, что десятичное число 1234 в семеричной системе счисления записывается как 34127.
Рациональная организация кодирующей последовательности может, таким образом, указывать на ведущую роль первых триплетных оснований в симметриях кода. Снова и снова указывает она и на базовую роль молекулярных масс в организации не только кодирующих правил, но также и кодируемого продукта. Кроме того, она показывает возможность оцифровки не только кодируемых (как у Щербака), но и кодирующих элементов — и не только в терминах нуклонных масс, но также используя простую нумерацию.
ФОРМАТЫ 2D и 3D
Удивительная организация генетического кода дает пищу великому множеству теоретиков и любителей для конструирования не только различного рода таблиц, но и объемных моделей. Большое количество разнообразных моделей кода можно отыскать в специальной и в не слишком специальной литературе. Автор не берется даже за краткий обзор результатов этой деятельности. Некоторые из них, на его вкус, как минимум, не интересны — например, попытка проводить параллели между организацией генетического кодирования и смысловым содержанием гексаграмм китайской Книги Перемен. В других он ничего не понимает — например, в топологической модели Владимира Карасева или в волновых моделях Петра Гаряева. В свое время Автор и сам оказался под некоторым впечатлением от трехмерной модели Трейнора и сотрудников — правда, потомутолько, что она представляла собой тетраэдр. Но модель строилась на основе кодирующих триплетов, а поскольку число их — 64 (не-тетраэдрическое), такой многогранник можно было построить только по определенным, не слишком логичным правилам. Гексаэдр (куб) годится для этой цели куда больше, поскольку 64=43, но он не так выразителен и опять- таки базируется на организации лишь одного из двух компонентов кода — азотистых оснований; кроме того, он уже практически использованв «обыкновенной» таблице генетического кода 4?4х4.
Некоторые модели остаются в тени или забыты совершенно незаслуженно. Например, объемная модель генетического кода Rafiki, Inc., выполненная в виде игрушки (см. рисунок и развертку), могла бы, как минимум, использоваться на уроках биологии и будила бы воображение молодых людей, подогревая их интерес к этой науке и определяя и их, и ее будущее.


Эта игрушка представляет собой додекаэдр, «кристалл», собранный из 120 тетраэдров (Автор не вдается здесь в детали её построения, их можно найти на сайте http://www.codefun.com/Index.htm). Разумеется, ничего подобного в природе нет, зато модель Рафики хорошо иллюстрирует симметрии кодирования и даже некоторые аспекты укладки белковых молекул.
Между тем число продуктов кодирования (20) дает соблазн собрать именно тетраэдр; надо только сформулировать простой принцип сборки, желательно учитывающийи кодирующие основания, и кодируемые аминокислоты, помня об упомянутом выше ограничении Эйгена: теория может быть корректной или нет; модель имеет третью возможность — оставаясь корректной, совершенно не относиться к делу (http://en.thinkexist.com/quotation/a-theory-has-only-the-alternative-of-being- wrong/354852.html a theory has only the alternative of being wrong; а model has a third possibility — it might be right but irrelevant). Зато у модели, как и сказано в Главе 69, есть очевидное достоинство: представляя явление в неожиданном ракурсе, она заставляет думать.
Здесь мы, однако, рассказываем не просто о геометрической симметрии генетического кода (о ней уже шла речь в Главе А), но о моделях, симметрия которых базируется на оцифровке генетического кода, реализуемой по тому или иному принципу. Более того, этот подход привлекает нас, в первую очередь, тогда, когда такой оцифровке подвергаются оба компонента кода, а не только продукты кодирования. В конце предыдущей главы (Глава Б1) мы описали «виртуальный олигопептид», который демонстрировал равновесие совокупных нуклонных масс стандартных и вариабельных частей кодируемых продуктов. Мы обнаружили, что этот «олигопептид» имеет любопытные арифметические свойства в отношении составляющих его кодирующих оснований, которые, неожиданно подчеркивают акцентируемый Щербаком децимализм генетического кода. Параметр, выявляющий обнаруженные свойства, представляет собой простой номер каждого из четырех азотистых оснований в их упорядоченном по изменению молекулярной массы ряду. В данной главе мы попытаемся проанализировать организацию генетического кода, используя оба указанных параметра (нуклонные числа и порядковые номера) обоих компонентов кода. Если эта попытка окажется удачной, и мы найдем, что одна и та же организация кода (модель) характеризуется арифметическими симметриями по каждому из этих параметров, тогда легкомысленная готовность Автора сравнивать десятичное число 3412 и цифровой ряд 3412 по чисто внешнему сходству, может показаться Читателю не такой уж смешной.
Вернемся к матрице генетического кода, «аналоговая» версия которой описана в Главе А. Ее оцифровка в параметрах нуклонных масс («сжатая» версия — без пятой, @-строки) реализуется упорядоченными по массе последовательностями первых кодонных оснований (по вертикали) и соответствующих им продуктов (по горизонтали); слева — аминокислоты в 'нейтральной'версии (0), справа — в заряженной (+/-). Под символом каждой аминокислоты — ее нуклонная масса (нуклонная масса боковой цепи ее молекулы).

Организующая матрицу последовательность первых триплетных букв — CTAG — демонстрирует не только симметрию по комплементарностиС?G, A=T(черточки между основаниями символизируют число водородных связей, которые их объединяют), но и совпадающую с ней количественную симметрию цифрового ряда 1234: 1+4=2+3. Комплементарность оснований позволяет собрать и другой ряд — AGCT, в котором упорядоченность по массе комплементарных пар имеет общее направление. Этому ряду и соответствует цифровая последовательность 3412, описанная в предыдущей главе.
Теперь, чтобы объединить в общем представлении и аминокислоты, и азотистые основания, надо описать те и другие в общих терминах. В нашем случае это — либо нуклонная масса вариабельных частей молекулы, либо простое перечисление элементов, упорядоченных по массе. Выбор вариабельной части молекул аминокислот очевиден — это их боковая цепь. Вариабельная часть молекулы азотистого основания не представляет собой столь ясно выделяемую структуру. В то же время стандартным блоком, общим для всех оснований, является вполне выраженная структура — гексацикл (шестичленное кольцо из четырех атомов углерода, 2-4-5-6, и двух — азота 1-3):
