продувался гелий, тогда как в опыте по выделению радиоактивности камера была все время закрыта. Анализ, проведенный с использованием ГХМС, показал, что при нагревании образцов грунта до температуры 50 °C около 1 % их массы выделяется в виде воды, а какая-то часть воды выделяется даже при нагревании до 200 °C. Несомненно, что эта вода образуется из гидратированных минералов, а не в результате испарения ее свободной формы. Анализы ГХМС не проводились при температуре 16 °C, но длительное пребывание образца марсианского грунта при этой температуре в ходе эксперимента ВРМ вполне могло привести к образованию достаточного количества воды, которая и разрушила вещество — окислитель, ответственное за возникновение СО2. Возможно и другое объяснение. Быть может, на Марсе существуют термостабильные и термолабильные пероксиды, вызывающие окисление, и те из них, которые были обнаружены в эксперименте по выделению радиоактивности, принадлежали именно к последнему классу.

Рис. 17. Образование радиоактивного диоксида углерода в первом эксперименте по выделению радиоактивной метки, проведенном на Равнине Хриса (кривая А), и контрольный опыт с прогревом образца (кривая В). Падение радиоактивности после повторной инъекции питательной среды (кривая А) свидетельствует о том, что часть диоксида углерода растворилась в среде. (Из книги: Horowitz N. Н. The Search for Life on Mars, © by Scientific American, Inc., 1977.)

Эксперименты по выделению продуктов пиролиза (ВПП). Еще до полетов 'Викингов' можно было с уверенностью сказать, что если жизнь и существует на Марсе, то она приспособлена к марсианским, а не к земным условиям. Поэтому мной вместе с сотрудниками Джорджем Хобби и Джерри Хаббардом были разработаны эксперименты по выделению продуктов пиролиза, называемые также экспериментами по ассимиляции углерода, которые предназначались специально для проведения биологического анализа марсианского грунта именно при существующих на Марсе условиях.

План эксперимента состоял в инкубации образца марсианского грунта в атмосфере Марса, обращенной небольшим количеством меченных радиоактивным углеродом газов СО и СО2 (они присутствуют в атмосфере планеты в количествах 0.1 и 95 % соответственно), и последующем измерении количества атомов радиоактивного углерода, включившихся в органическое вещество образца. Инкубация грунта должна была происходить в течение 120 ч при давлении, температуре, составе атмосферы и солнечном освещении, характерных для Марса. После удаления из камеры радиоактивной атмосферы проба должна была нагреваться в потоке гелия до температуры 625 °C, чтобы произошел пиролиз любых содержащихся в ней органических веществ и превращение их в летучие фрагменты. Ток гелия уносил их затем из камеры в колонку, заполненную сорбентом из кизельгура[21], поглощающим все органические вещества, но не СО и СО2. Как только молекулы органических соединений отделялись от непрореагировавших с кизельгуром газов, колонка нагревалась до температуры 64 °C, при которой газы высвобождались и затем окислялись до СО, под действием находившегося в этой же колонке оксида меди. И наконец, можно было измерить радиоактивность образовавшегося СО2.

На Марсе этот эксперимент был осуществлен по запланированной программе, за исключением двух пунктов. Во-первых, из-за наличия в спускаемых аппаратах источников тепла температура в камерах, где проводился анализ, была выше температуры марсианского грунта в обоих районах посадки. Температура в камере колебалась в пределах 8 — 26 °C, тогда как температура грунта снаружи оставалась ниже 0 °C в ходе всего эксперимента. Поскольку на экваторе Марса температура может достигать 25 °C, нельзя сказать, что температурные условия в камерах сильно отличались от марсианских.

Во-вторых, в качестве источника освещения в эксперименте использовался не солнечный свет на Марсе — это было технически трудно осуществить, — а ксеноновая лампа со спектром, похожим на спектр солнечного света у поверхности Марса (в котором отфильтрованы длины волн короче 320 нм). Свет требовался для обеспечения энергией фотосинтеза организмов, если бы таковые обнаружились. Так как лабораторные эксперименты показали, что на минеральной поверхности, облученной ультрафиолетовым светом с длиной волны короче 300 нм, в присутствии СО и паров воды идет абиогенный синтез простых органических соединений, мы решили исключить этот диапазон волн, чтобы избежать путаницы при выяснении природы источников органического вещества. Хотя указанная область присутствует в спектре солнечного излучения, достигающего поверхности Марса, мы оправдывали ее исключение тем, что свет этих длин волн настолько разрушителен для сложных органических молекул, что у марсианских организмов должны были выработаться защитные механизмы, позволяющие либо отфильтровывать, либо нейтрализовать ее действие.

Лабораторные испытания показали, что течение эксперимента не зависит от фотосинтеза в пробах грунта. Фиксация СО и СО2 в органическое вещество в живых клетках происходит и в ходе темновых процессов. В самом деле, при лабораторных испытаниях приборы регистрировали фиксацию как в темноте, так и при фотосинтезе.

На Марсе было проведено девять экспериментов по выделению продуктов пиролиза: шесть — на Равнине Хриса и три — на Равнине Утопия. Самый первый анализ (сделанный на Равнине Хриса, С1 — на рис. 18) дал положительный результат. Количество связавшегося углерода было невелико по сравнению с тем, что наблюдалось при анализах образцов земного грунта, но значительно выше фонового уровня, установленного в предполетных лабораторных анализах стерильных проб грунта. Учитывая меры, принятые для устранения помех небиологической природы, получение даже слабого сигнала с Марса было поразительным. Поэтому было решено провести новый контрольный эксперимент (С2): вторая проба марсианского грунта нагревалась при температуре 175 °C в течение трех часов перед инкубацией с радиоактивными газами. Количество связавшегося углерода при этом снизилось на 88 %. Казалось, мы обнаружили на Марсе синтез органического вещества, чувствительный к температуре, но то обстоятельство, что и после нагрева 12 % реакции продолжалось, ставило под сомнение биологическую природу процесса.

Рис. 18. Результаты экспериментов по выделению продуктов пиролиза, проведенных на Равнине Хриса (С1 — С6) и Равнине Утопия (U1 — U3), а также при имитации условий Марса с использованием магемита в лаборатории (МЗ — М6). Пик 1 соответствует количеству радиоактивного газа, поглощенного в образце грунта, но не вступившего в дальнейшие реакции. Пик 2 соответствует такой же части поглощенного газа, которая превратилась в органическое вещество. Точки, лежащие выше сплошной наклонной линии (внизу графика), соответствуют достоверному превышению фона, установленного в ходе лабораторных анализов стерильных образцов грунта или без него. Пробы с магемитом высушивали, подвергали дегазации и выдерживали в течение 5 сут в условиях, имитирующих состав и давление атмосферы Марса, а также интенсивность ультрафиолетового излучения на планете; далее образцы анализировали с помощью такого же прибора, который использовался для исследования продуктов пиролиза в спускаемых аппаратах 'Викинг'. (Дополнительные подробности см. в работе.)

В двух последующих экспериментах (С3 и С4) были предприняты безуспешные попытки повторить результат эксперимента С1. Если исходить из критериев, установленных на основании предполетных анализов, то результаты экспериментов можно лишь с большой натяжкой признать положительными, хотя ни один из них по количеству связанного углерода даже не приблизился к эксперименту С1. Была проведена еще одна проверка (С5) термостабильности слабых реакций, зарегистрированных в СЗ и С4. На этот раз образец грунта инкубировали при 12 °C в течение примерно 2 мин, после чего температура понижалась до 9 °C и грунт инкубировался еще около 2 ч. На этот раз никаких изменений в реакции не произошло, что опять же свидетельствовало о ее небиологической природе. В последнем эксперименте на Равнине Хриса (С6) изучалось влияние на реакцию паров воды. Никаких изменений не было обнаружено и в этом случае.

Из трех экспериментов, проведенных на Равнине Утопия, первый (U1) по слабому положительному

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату