The contracting battle for JSF will pit Lockheed Martin against Boeing (newly merged with McDonnell Douglas), with the winner possibly becoming the builder of the last manned tactical aircraft of all time. With a planned buy of some two thousand aircraft, it certainly will be the most expensive combat aircraft program in history. Meanwhile, for this program to succeed, it will have to satisfy four demanding customers-the USAF, the USN, the USMC, and the British Royal Navy. To satisfy these customers, the JSF Program Office envisions a family of three closely related but not totally identical airframes.
The USAF sees JSF as a conventional, multi-role strike fighter to replace the F-16. With many foreign air forces planning to retire their F-16 fleets around 2020, there is a huge potential export market for such an aircraft. In addition, the Marine Corps needs some six hundred STOVL (Short Takeoff/ Vertical Landing) aircraft to replace both the F/A-18C/D Hornet and the AV-8B Harrier. The similar Royal Navy requirement is for just sixty STOVL aircraft to replace the FRS.2 Sea Harriers embarked on their small
The U.S. Navy's requirement is for three hundred 'highly survivable' (meaning 'stealthy'), carrier-based strike fighters to replace early-model F/A-18's and the last of the F-14 Tomcats. Its version of the aircraft will have a number of differences with the other variants. For instance, the landing gear will have a longer stroke and higher load capacity than the USAF and USMC versions. To help during low-speed approaches, the Navy version will have a larger wing and larger tail control surfaces than the other JSF variants. The larger wing also means increased range and payload capability for the Navy variant, with almost twice the range of an F-18C on internal fuel.
As you would expect, the internal structure of the Navy variant will be strengthened in order to handle the loads associated with catapult launches and arrested landings. There will be a carrier-suitable tailhook, though this may not have to be as strong as on previous naval aircraft, because the JSF will be powered by the same Pratt & Whitney F119-PW-100 turbofan planned for use on the USAF F-22A Raptor. This engine has a '2- Dimensional' nozzle (it will rotate in the vertical plane), which will allow it to have much lower landing approach speeds than current carrier aircraft, and may allow the next generation of carriers (CVX) to do away with catapults altogether.
The Navy's need for survivability means that the JSF design will have a level of stealth technology comparable with the F-22 or B-2 stealth designs, which are the current gold standard in that area. All ordnance will be internally carried, and plans are for it to carry two 2,000-lb/909.1-kg-class weapons in addition to an internal gun and AAMs
Boeing and Lockheed Martin are scheduled to conduct a fly-off of their competing JSF designs in the year 2000, with a contract award the following year. The Boeing model is known as the X-32, while the Lockheed Martin design has been designated X-35. The winning entry should become operational sometime around 2010, at which time it will begin to replace the remaining F/A-18C/D aircraft in service. This is a make-or-break program for all the armed services of the United States. If it works, then the U.S. and our allies will have the pre-eminent strike fighter of the 21st century at their command.
The Future: Common Support Aircraft
While fighters and strike aircraft are important, the various support aircraft like the S-3 Viking and E-2 Hawkeye play equally vital roles in a CVW. And like fighters, they will someday have to be replaced. While this is not going to happen soon, planning for what will be known as the Common Support Aircraft (CSA) is already underway. This aircraft will take over the AEW, COD, ESM/SIGINT, and perhaps even tanker roles currently handled by no less than three different airframes. As always, funding is a problem. Right now, there is very little money available for the development of a new medium-lift airframe that could be made carrier-capable. In current-year dollars, it would probably cost something like $3 billion just to design and develop the airframe. And the price of the various mission equipment packages for each role is anybody's guess.
One likely way around this dilemma might involve adapting for the Navy the new V-22 Osprey tilt-rotor transport currently entering production for the USMC and USAF. A V-22-based CSA could eliminate much of the airframe development costs and allow the design of state-of-the-art mission-equipment packages. It might even replace the SH-60Rs and CH-60's when they begin to wear out.
The Future: Bombs and Missiles
With the introduction of GPS-guided air-to-ground ordnance and improved versions of a number of older PGM systems, the era of Navy aircraft dropping and firing unguided ordnance is dead. [62] In Operation Deliberate Force in Bosnia, for example, something like 70 % of the weapons expended in that short but effective air campaign were PGMs. This percentage is likely to rise in future conflicts. What follows is a quick look at the programs that are important to naval aviators.
AGM-84E SLAM Expanded Response Missile
As mentioned earlier, the engineers at Boeing Missile Systems have been working on an improved version of the AGM-84E SLAM missile, which they call SLAM Expanded Response (SLAM-ER). SLAM-ER is designed to add a new generation of technology to the solid foundation laid by Harpoon and SLAM. This new missile will give the Navy a standoff strike weapon with unprecedented lethal power and accuracy. Improvements to the basic SLAM include a pair of 'pop-out' wings (similar to those on the TLAM), which will give it more range (out to 150 nm/278 km) and better maneuverability. A new warhead utilizes the same kind of reactive titanium casing used on the Block III TLAM, while its nose has been modified with a new seeker window to give the seeker a better field-of-view. The guidance system of SLAM-ER incorporates a new software technology developed by Boeing and the labs at Naval Weapons Center at China Lake, California. Known as Automatic Target Acquisition (ATA, also known as Direct Attack Munition Affordable Seeker-DAMASK), it allows the SLAM-ER seeker to automatically pick out a target from the background clutter. The seeker then 'locks' it up and flies the missile to a precise hit (within three meters/ten feet of the planned aimpoint). The SLAM-ER is already in low-rate production and has passed all of its tests with flying colors. In fact, this program has become so successful that the Navy has deleted its funding for the planned Joint Air-to-Surface Standoff Missile (JASSAM), since SLAM-ER completely meets the requirements for that. Current plans have SLAM-ER entering the fleet in 1999.