the display. After several minutes of work and possibly a couple of maneuvers to verify the accuracy of the solution, it is now time to shoot.
Despite what some computer games would have you believe, there are no joysticks for the fire control technicians to 'fly' the torpedo onto the target. Instead, the technician changes the weapon presets on a screen that looks like a shopping list of parameters such as the seeker activation point (called 'enable run'), search depth, and which seeker head mode the weapon is to be fired in. Also, the BSY-1 has several different operating modes, including a 'snapshot' mode for fast-moving tactical situations that require the Miami to react quickly. Let's assume that the fire control technician has been ordered to set up a pair of Mk 48 ADCAP torpedoes for a shot at a submarine. He selects the desired target track and allows the BSY-1 to input the weapon presets to the list.
At any time, he can override or alter the presets to suit the tactical situation. For example, the ADCAP has modes to avoid making circular runs and attacking the firing sub accidentally, as well as the ability to preset a three-dimensional search zone for the weapons to search in, but not go outside. Once the weapons have been loaded with the required data, they can be fired by the weapons officer at the order of the captain. With the weapons now in the water, a junior officer calls up the weapons display on his console and monitors the torpedoes' status.
One of the nice features of the BSY-1/ADCAP combination is that the technician can 'swim' the torpedoes out onto the target and use the seeker heads as offboard sensors to fine-tune the firing solution. This is made possible by the data link wire that the weapons trail out behind them, which is connected to the torpedo tubes of the Miami. This means that if the technician sees the target move out of the selected area, or do something tactically different from what he thought it would do, he can quickly change the necessary presets right from his weapon control menu.
When the ADCAPs finally acquire the target, the process becomes completely automatic, with the operator's help required only if a torpedo malfunctions. The logic in the guidance systems of the ADCAPs is very good, though if anything goes wrong the fire control technicians are always ready to step in on their own. Assuming that the weapons do their job, the final run to the target will be like watching a train wreck. When they hit, the sonar technician must assess the damage that has been inflicted. There may be breaking-up noises or the distinctive crunch of an imploding pressure hull. In any case, the tracking teams are now ready to start again, a never-ending task while on patrol.
One thing we haven't mentioned yet is just why the Miami has an active sonar mode when so many great things can be accomplished just by listening passively. For almost thirty years, going active with a sonar has meant giving up the tactical advantage. The simple truth is that while using an active sonar does alert a potential enemy to your presence, it does have some significant advantages. The latest nuclear boats produced by the former Soviet Union/Commonwealth of Independent States are almost as good acoustically as a Flight 1 Los Angeles. This means that finding them passively is going to be extremely difficult. And the current generation of diesel boats, when running on their batteries, are just a little worse, being very quiet targets to any passive sonar system in existence. Using an active sonar can overcome some of these problems at relatively short ranges, and has tactical benefits in some situations, especially in verifying ranges before shooting. Unfortunately, an active sonar can be heard at least five times farther than the sonar can detect a target.
The active sonar mode of the sphere sonar is incredibly powerful and can cause steam bubbles to form on the outer surfaces of the sonar dome. The spherical array does give accurate ranges and bearings, providing excellent fire control solutions in the process. In addition, it has the ability to form its sound signals into beams that are focused instead of just radiating in all directions. This means that only the target boat will know it is being 'pinged,' and other boats in the area will not. In the sort of close-range 'knife fights' that may develop between the quieter boats inhabiting the oceans today, going active may just be a good thing to do.
Notional view of a BSY-1 fire control console preparing a fire control solution. Note the lines of dots adjusted by the knobs at the bottom of the diagram. When the dots stack in a straight line, the solution is ready. JACK RYAN ENTERPRISES, LTD. Weapons control console in the control room, USS Miami. JOHN D. GRESHAM Notional view of a BSY-1 fire control console preparing to fire a Mk 48 ADCAP. The table of data shows the various weapon presets. JACK RYAN ENTERPRISES, LTD. Torpedo room, USS Miami. JACK RYAN ENTERPRISES, LTD. This is a rough picture of how the BSY-1 system and her operators work together. Many other elements go into the process, but I hope this has given you a feel for how the operators would use BSY-1 to fight the boat. If you think it seems like a huge game of blindman's buff, you are right on target, for it is said that in the land of the blind, the one-eyed man is king. In the dark realm of the world's oceans, the Miami with its BSY-1 combat system is the king with the biggest eye.
When you wander down a couple of flights of stairs and move forward, you eventually wind up in the torpedo room. Here you are struck by the feeling of being in the very bowels of the Miami. Three sets of two-high racks allow for the stowage of twenty-two weapons, and four more are kept in the tubes. Usually, however, one or two of the rack spaces or tubes are left empty, to facilitate movement of the weapons and allow maintenance. Between the center and side racks are sets of loading and ramming gear. Go forward down the aisles between the racks and you will find the torpedo tubes. These have an internal diameter of 21 inches/533mm and are angled approximately 7 to 8 degrees off the boat's centerline, so that when weapons are launched, they clear the bow with its big active sonar dome. One unique design aspect is the ability to move any weapon from any position in the racks to a torpedo tube or any other position on the racks. While the geometry of such a move is somewhat complicated, the actual movement of the weapons resembles a child's puzzle in which eight pieces are moved through nine spaces to form a picture.
No. 1 torpedo tube, USS Miami. The inner door is open, showing the tube guides and the attachment points for the weapon 'A' cable and torpedo guidance wire (when required). JOHN D. GRESHAM The torpedo room of USS Miami. The weapons on their racks are to the right, with the No. 2 and No. 3 torpedo tubes on the starboard side. The panel at the left of the photo is the control panel for the torpedo tubes and VLS system. JOHN D. GRESHAM No. 2 torpedo tube, USS Miami. The inner door is shut and the tube status sign shows it to be empty. JOHN D. GRESHAM Loading the weapons into the boat itself is a rather involved process, though one that the Miami's designers actually thought out pretty well. Just forward of the fairwater is the weapons loading hatch; through here the weapons are brought on board. The first step in the process is to open this hatch and unstow the loading gear, which is cleverly composed of sections of the flooring structure from the second and third decks of the boat. The second-deck flooring becomes a loading rack that is hoisted up on deck to receive the weapons from the loading crane alongside. A section of the third deck serves as the transit rack, which spans the gap left by taking up the floor structure. Thus while loading is taking place, a gap like a canyon runs down