first models did not have steering mechanisms, they were easily pushed off course by tides or ocean currents, frequently causing them to miss their targets.

Whitehead applied his engineering skills to the first problem: depth control. It took him two years to solve it, but by 1868, he had the solution: a device that he referred to as the secret. Many European countries were becoming interested in the automotive torpedo, and Whitehead was intensely aware that he had a growing list of competitors. To throw them off the scent, Whitehead hinted strongly that his secret depth control device was highly complex and would be difficult or impossible to duplicate. In fact — despite its dramatic title — the secret was little more than a piston, a cylinder, and a spring attached to the horizontal fins by a mechanical linkage. Seawater flowed into the cylinder by means of a small vent just behind the warhead. As the water pressure increased with depth, the seawater in the chamber would exert force on the piston, compressing it against the spring. The motion of the piston would in turn move the mechanical linkage, which would change the angle of the horizontal fins, making the torpedo climb or dive. When the force exerted on the piston by the seawater became equal to the opposing force of the spring, the fins would return to a level position, causing the torpedo to level off. By adjusting the tension on the spring, Whitehead was able to pre-select the depth to which a torpedo would dive. To make depth changes even smoother, Whitehead attached a pendulum to the linkage to dampen minor oscillations as the piston shifted positions.

The basic design of Whitehead’s secret depth control device was so successful that it remained in use — with very few changes — for nearly a hundred years.

With the depth control issue finally solved, Whitehead turned his attention to the problem of steering. Unlike the depth control issue, which had yielded to Whitehead’s engineering expertise in only two years, the steering problem seemed to defy solution. Whitehead (and his competitors) spent the next several decades trying to solve it.

In the meantime, the unsolved steering problem did not prevent the torpedo from gaining popularity. Over the social and moral objections of many naval officers, nearly every navy in Europe began buying or building automotive torpedoes. Small, steam-powered torpedo boats began appearing in increasing numbers, and many larger warships were back-fitted to carry torpedoes. The situation escalated into an arms race, and conventional wisdom held that any navy that did not arm itself with torpedoes was likely to fall prey to one that had embraced torpedo warfare.

On January 25, 1878, the automotive torpedo found its first real use in combat. Russia, under the rule of Tsar Alexander II, had been at war with Turkey since April of the previous year. On the night of January twenty-fifth, two Russian torpedo boats, Tchesma and Sinope, conducted attacks on the armed Turkish steamer Intibah. Both shots were direct hits, and the resulting explosions devastated the Turkish ship. The wreckage of the Intibah slipped beneath the waves in less than two minutes.

In many ways, the attack was less impressive than Whitehead might have hoped for. The Intibah—although armed — was not an ironclad, so the torpedo’s effectiveness still had not been demonstrated against a fully armored warship. (In fact, the Tchesma and Sinope had conducted earlier attacks on the Turkish ironclad Mahmoudieh, but both of their torpedoes had missed the target.) Still, details notwithstanding, history had been made: automotive torpedoes had struck and destroyed an armed vessel under conditions of actual combat. The torpedo was no longer a curiosity, or even a theoretical weapon. It was an engine of war. The race to acquire and perfect torpedo technology rose to a level approaching frenzy.

The torpedo, in various designs, saw use in several sea battles over the next few decades, with wildly varying degrees of success. The mixed results were the product of two factors: one positive and one negative. On the positive side, the destructive energy that a torpedo could deliver was astounding; it was not at all unusual for a single torpedo hit to cripple or sink a fully armored warship. On the negative side, the lack of a self-correcting steering mechanism made it difficult to actually hit a target with any real degree of reliability.

In the early 1890s, Whitehead became convinced that the torpedo steering problem could be solved by installing a gyroscope. (Invented in 1852 by French physicist Jean Bernard Leon Foucault, the gyroscope was known to have interesting properties but was generally thought to have no practical application.) Whitehead embarked on a series of experiments using a Russian-made gyro called a Petrovich. Despite its promise, the Russian gyro was too crudely made to suit Whitehead’s purpose. In 1895, Whitehead turned his attention to a precision-built gyroscope designed by an Austrian naval engineer named Ludwig Obry. Unlike the Russian model, Obry’s gyroscope could achieve and maintain a high enough rotation speed (about 2,400 rpm) to give a torpedo both duration and accuracy.

Whitehead attached the gyro to a two-way air valve, which directed measured quantities of compressed air to a steering engine whenever a torpedo began to deviate from its directed path through the water. The steering engine was connected in turn to the torpedo’s vertical fins, which Whitehead re-engineered into turnable rudders. It was an ingenious solution to a problem that had plagued the automotive torpedo ever since its birth in 1866. Gyroscopic steering increased the accuracy of the torpedo’s course to a mere half degree over a distance of seven thousand yards, or three and a half nautical miles.

Suddenly, the torpedo had striking range, accuracy, and the incredible destructive potential for which it had become famous. With the major engineering problems finally solved, it was nearly inevitable that the torpedo would begin to exert a significant influence on world events.

CHAPTER 16

SOUTHERN MEDITERRANEAN SEA MONDAY; 14 MAY 1609 hours (4:09 PM) TIME ZONE +2 ‘BRAVO’

Lieutenant Shari Scarlotti leaned her head against the side window and felt the bass drone of her plane’s engines resonate through her skull. Dark-haired and small-boned, her slight frame looked out of scale in the pilot’s seat, like a child swallowed up in her father’s easy chair. The relentless sound of the turbines never ceased and rarely wavered while the big four-engined aircraft was airborne.

Her air crew had nicknamed it the hypno-tone, and they frequently joked that it lulled them into a post-hypnotic state and then forced them to perform acts that they would never have even considered without its mesmeric (and undoubtedly evil) influence. Any trouble they got into when they were off- duty was invariably blamed on fourteen-hour missions spent listening to the hypno-tone.

Her Flight Engineer, Chief Benjamin Lanier, took the opposite side of the argument, asserting that the steady thrum of the huge Allison turboprops was the most beautiful music audible to the human ear. With a couple of beers in him, he’d even been known to claim that he couldn’t make love to his wife without a recording of turboprops droning in the background.

Shari wouldn’t go quite that far, but she liked the sound; she liked it a lot. The Lockheed Martin P-3C Orion was a big plane and over thirty years old. But as long as the 4,600 horsepower engines kept pumping out that deep monotonous tone, she knew that her aircraft had a guaranteed place in the sky.

Shari’s copilot, Lieutenant (junior grade) Andy Cole, squeezed past her right shoulder and slid into the right- hand seat. He held out a tall, spill-proof plastic cup. “Coffee, boss? Just the way you like it: fourteen sugars, nine creams, and then I waved the cup over the pot to give it that good coffee flavor.”

Shari reached for the cup and took a sip. It was just the way she liked it, hot and black. She swallowed. “Thanks, wise-ass.” She took another sip and swallowed again. “What’s the word from Nav?”

Andy set his own coffee cup in a car-type cup holder that he had Velcroed to his side of the cockpit and went about the business of belting himself into the copilot’s chair. “Our fearless Navigator assures me that we are right on track, and nine minutes ahead of profile. We should be on station in about fifteen minutes.” He lifted his coffee cup out of the holder.

Вы читаете Sea of Shadows
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату