«doormat» became «floor lamp,» «padlock» became «catnap,» «therefore» became «air force,» and «lifeboat» became «lightbulb.» While taking the test I knew that «catnap» and «floor lamp» were wrong, but I thought that «workshop» and «lightbulb» were correct. I often figure out words by the context. If I am at work on an equipment design project, I know that an engineer probably will be talking about a workshop instead of a woodchuck.

Dr. Burleigh has tested other people with autism, and they show the same pattern of hearing deficiencies. She has been able to improve the hearing abilities of some people with auditory processing problems by placing a plug that filters certain frequencies in the most impaired ear. She explained to me that the kinds of problems I have in processing speech indicate defects in my brain stem and possibly the corpus callosum, the bundle of neurons that allows the two halves of the brain to communicate. The brain stem is one of the relay stations that send input from the ears to the thinking parts of the brain.

The techniques used during some of these tests have been available for more than twenty years, but nobody used them on people with autism, mostly owing to a lot of old-fashioned thinking. Working with the electrical engineers helped Dr. Burleigh to look at sensory processing in a new light. Professionals in the field of educating autistic children have largely ignored sensory problems and favored behavioral theory. Edward Ornitz and Peter Tanguay at UCLA documented abnormalities in the brain stem of autistic children more than ten years ago. Dr. Ornitz wrote a major review of the scientific literature on sensory processing problems in autism in the Journal of the American Academy of Child Psychiatry in 1985. He stated that people with autism either overreact or underreact to different stimuli, and suggested that some of their deficits could be caused by distorted sensory input. But his important paper was overlooked by educators, who had completely embraced behavior modification methods at the time and ignored the impact of sensory problems.

My auditory problems are very mild compared with those of individuals who are more severely afflicted with autism. Some people have lost all or almost all ability to understand speech. Others have such acute hearing that everyday noises are completely intolerable. One person said that rain sounded like gunfire; others claim they hear blood whooshing through their veins or every sound in an entire school building. Their world is a confusing mass of noise. One woman said she could not tolerate the sound of a baby crying even when she was wearing a combination of earplugs and industrial sound-protector earmuffs. These symptoms are similar to those of people who have had brain stem injuries in an accident, some of whom cannot abide the smallest amount of noise or bright light. Certain types of head injuries create symptoms that partially mimic autistic auditory problems. A girl who was hit on the head during a riot told me that she had auditory problems similar to mine and could no longer ignore distracting background noise. I sometimes have small auditory tune-outs when my ears shut off and I start to daydream. If I work hard to pay attention, I can prevent these lapses, but when I get tired I have a greater tendency to tune out. Now I have control over this, but a person with greater auditory processing difficulties may not be able to gain such control.

Darren White, a young man with autism, wrote that his hearing faded in and out. Sometimes it was loud and sometimes it was soft. He described the sensation in the journal Medical Hypothesis: «Another trick my ears played was to change the volume of sounds around me. Sometimes when other kids spoke to me I would scarcely hear, then sometimes they sounded like bullets.» Other hearing problems can include a buzzing sound in the ears. I sometimes hear my heartbeat in my ears, or I hear a kind of electronic noise like the sound that accompanies a TV test pattern.

Some autistic children do not pay attention to spoken language. Jane Taylor McDonnell wrote that her two- year-old son could not respond to simple spoken commands. He had to figure out what people wanted by looking at their gestures and the things in the room. Autistic children with echolalia help themselves understand what has been said by repeating it; Donna Williams stated that if she didn't repeat the words, she only understood 5 to 10 percent of what was said. Children with echolalia appear to have severe speech perception problems. In Somebody Somewhere, Donna writes, «As a child I had been echolalic and had difficulty learning the purpose and significance of language.» She had problems with perceiving both the words and the intonation or tone of speech as a seamless whole. When she was young, she thought that the intonation of a voice was the words. If she listened to the intonation, she could not hear the words.

Therese Joliffe also used echolalia to help her learn language. In the December 1992 issue of Communication, published by the National Autistic Society in England, she explained how she usually loses the first few words when someone speaks to her, because it takes her a while to realize that somebody has spoken. It was a long time before she figured out the purpose of speech. When she was young, speech had no more significance than other sounds. To learn that speech had meaning, she had to see words written on paper. After seeing the words, she began to recognize them in speech.

Jim Sinclair also had to learn that spoken words had meaning. He described the difficulties he experienced in High-Functioning Individuals with Autism, explaining that «speech therapy was just a lot of meaningless drills in repeating meaningless sounds for incomprehensible reasons. I had no idea that this could be a way to exchange meaning with other minds.»

It is likely that some of the people who are nonverbal fail to develop language because not enough speech gets through their dysfunctional auditory system. Both Joan Burleigh's auditory test and recent research by Japanese scientists at the University of Tokushima School of Medicine indicate that abnormal brain stem functioning is the cause of at least some of the problems with understanding speech. Dr. Hashimoto and his colleagues found that nonverbal people with autism have smaller brain stems than normal, and D. G. McClelland and his colleagues at Queen's University in Belfast, Ireland, found that so-called low-functioning individuals who are unable to speak show abnormalities in brain stem function when measured by a test that determines the brain stem's ability to transmit nerve impulses.

Therapists have learned from experience that sometimes nonverbal children can be taught to sing before they can speak. In some people the brain circuits used for singing may be more normal than the circuits used for speech. Possibly the song rhythm helps to stabilize auditory processing and block out intruding sounds. This may explain why some autistic children use commercial jingles as an attempt to communicate. The pairing of a visual cue and a sung slogan makes a rhythmic and visual impression. Therese Joliffe's parents told her that when she was a child,she would speak when certain music was played. I used to hum to myself to block out bothersome noise.

Visual Problems

Some people have very severe visual processing problems, and sight may be their most unreliable sense. Some nonverbal people with autism act as though they are blind when they are in a strange place, and others have problems with visual tuneouts and whiteouts, where vision completely shuts down. During a white-out they see snow, as if they were tuned to a vacant television channel. Several autistic people with normal vision have told me that they have depth perception problems and have difficulty going down stairs. The eyes and the retina usually function normally, and the person can pass an eye examination. The problem arises in processing visual information in the brain.

As a child I was attracted to bright colors and moving objects that were visually stimulating, such as kites and flying model airplanes. I loved striped shirts and Day-Glo paint, and I loved to watch supermarket sliding doors go back and forth. When I watched the edge of the door move across my visual field, I 'd get a little pleasurable chill up my back. Minor sensory processing deficits heightened my attraction to certain stimulation, whereas a greater sensory processing defect might cause another child to fear and avoid that same stimulus. Some of the problems autistics have with making eye contact may be nothing more than an intolerance for the movement of the other person's eyes. One autistic person reported that looking at other people's eyes was difficult because the eyes did not stay still. Face recognition also presents certain problems for many people with autism.

I often get into embarrassing situations because I do not remember faces unless I have seen the people many times or they have a very distinct facial feature, such as a big beard, thick glasses, or a strange hairstyle. Barbara Jones, a woman with autism, told me that to remember a face, she has to see the person fifteen times. Barbara works in a laboratory identifying cancer cells under a microscope. Her ability to recognize patterns has made her one of the best technicians in the lab. Her visual abilities enable her to spot abnormal cells instantly, because they just jump out at her. But there is some evidence that facial recognition involves different neural

Вы читаете Thinking in pictures
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату