которая позволила бы распознать наилучшую среди наиболее правдоподобных гипотез.

Наша экспертная система была классификационного или 'анализирующего' типа, в противоположность системам 'синтезирующего' типа, в которых ставится задача построить что-либо. В последнем случае результат работы - это план действий, предпринимаемых для выполнения этой задачи, например план действий робота, компьютерная конфигурация, удовлетворяющая заданным требованиям, или форсированная комбинация в шахматах. Наш пример, относящийся к локализации неисправностей, можно естественным образом расширить, чтобы включить в рассмотрение действия. Например, если система не может прийти к определенному выводу, поскольку приборы выключены, она даст рекомендацию: 'Включить лампу 3'. Здесь сразу возникнет задача построения оптимального плана: минимизировать число действий, необходимых для достижения окончательного вывода.

Проекты

Завершите программирование нашей оболочки в части, касающейся неопределенной информации (процедура ответпольз и другие).

Рассмотрите перечисленные выше критические замечания, а также возможные расширения нашей экспертной системы. Разработайте и реализуйте соответствующие усовершенствования.

Резюме 

• Обычно от экспертных систем требуют выполнения следующих функций:

  решение задач в заданной предметной области,

  объяснение процесса решения задач,

  работа с неопределенной и неполной информацией.

• Удобно считать, что экспертная система со стоит из двух модулей: оболочки и базы знаний. Оболочка в свою очередь состоит из механизма логического вывода и интерфейса с пользователем.

• При создании экспертной системы необходимо принять решения о выборе формального языка представления знаний, механизма логического вывода, средств взаимодействия с пользователем и способа работы в условиях неопределенности.

• 'Если-то'-правила, или продукции являются наиболее часто применяемой формой представления знаний в экспертных системах.

• Оболочка, разработанная в данной главе, интерпретирует 'если-то'-правила, обеспечивает выдачу объяснений типа 'как' и 'почему' и запрашивает у пользователя необходимую информацию.

• Машина логического вывода была расширена для работы с неопределенной информацией.

• В данной главе были обсуждены следующие понятия:

  экспертные системы

  база знаний, оболочка,

  машина логического вывода

  'если-то'-правила, продукции

  объяснения типа 'как' и 'почему'

  категорические знания, неопределенные знания

  сеть вывода,

  распространение оценок достоверности по сети

Литература

Книга Michie (1979) - это сборник статей, относящихся к различным аспектам экспертных систем и инженерии знаний. Две ранние экспертные системы, оказавшие большое влияние на развитие этой области, MYCIN и Prospector, описаны в Shortliffe (1976) и Duda et al (1979). Книга Buchanan and Shortliffe (1984) является хорошим сборником статей, посвященных результатам экспериментов с системой MYCIN. Weiss and Kulikowski (1984) описывают свой практический опыт разработки экспертных систем. Вопрос о работе в условиях неопределенности еще нельзя считать вполне решенным: в статье Quinlan (1983) сравниваются различные подходы к этой проблеме. Способ разработки нашей экспертной системы до некоторой степени аналогичен описанному в Hammond (1984). Некоторые примеры, использовавшиеся в тексте, заимствованы из Winston (1984), Shortliffe (1976), Duda et al (1979), Bratko (1982) и Reiter (1980).

Bratko I. (1982). Knowledge-based problem-solving in AL3. In: Machine Intelligence 10 (J.E. Hayes, D. Michie, Y.H. Pao, eds.). Ellis Horwood.

Buchanan B.G. and Shortliffe E.H. (1984, eds.). Rule-based Expert Systems: The МYСIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley.

Duda R., Gasschnig J. and Hart P. (1979). Model design in the Prospector consultant system for mineral exploration. In: Expert Systems in the Microelectronic Age (D. Michie, ed.). Edinburgh University Press.

Hammond P. (1984). vMicro-PROLOG for Expert Systems. In: Micro-PROLOG: Programming in Logic (K.L. Clark, F.G. McCabe, eds.). Prentice-Hall.

Michie D. (1979, ed.). Expert Systems in the Microelectronic Age. Edinburgh University Press.

Quinlan J.R. (1983). Inferno: a cautious approach to uncertain reasoning. The Computer Journal 26: 255-270.

Reiter J. (1980). AL/X: An Expert System Using Plausible Inference. Oxford: Intelligent Terminals Ltd.

Shortliffe E. (1976). Computer-based Medical Consultations: MYCIN. Elsevier.

Weiss S.M. and Kulikowski CA. (1984). A Practical Guide to Designing Expert Systems. Chapman and Hall.

Winston P. H. (1984). Artificial Intelligence (second edition). Addison-Wesley. [Имеется перевод первого издания: Уинстон П. Искусственный интеллект. — М.: Мир, 1980.]

Глава 15

Игры

В этой главе мы рассмотрим методы программирования игр двух лиц с полной информацией (таких, как шахматы). Для игр, представляющих интерес, деревья возможных продолжений слишком велики, чтобы можно было говорить о полном переборе, поэтому необходимы какие-то другие подходы. Один из таких методов, основанный на минимаксном принципе, имеет эффективную реализацию, известную под названием 'альфа-бета алгоритм'. В дополнение к этому стандартному методу, мы разработаем в этой главе программу на основе Языка Советов (Advice Language), который дает возможность вносить в шахматную программу знания о типовых ситуациях. Этот довольно подробный пример может послужить еще одной иллюстрацией того, насколько хорошо Пролог приспособлен для реализации систем, основанных на знаниях.

15.1. Игры двух лиц с полной информацией

Игры, которые мы собираемся обсуждать в данной главе, относятся к классу так называемых игр

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату