книге Nilsson (1980) можно найти фундаментальные понятия, относящиеся к задаче автоматического доказательства теорем, включая алгоритм преобразования логических формул в конъюнктивную нормальную форму. Прологовская программа для выполнения этого преобразования приведена в Clocksin and Mellish (1981).
Clocksin F. W. and Mellish С S. (1981).
Nilsson N. J. (1980).
Waterman D. A. and Hayes-Roth F. (1978, eds).
Ответы к некоторым упражнениям
1.1
(a) no
(b) X = пат
(c) X = боб
(d) X = боб, Y = пат
1.2
(a) ?- родитель( X, пат).
(b) ?- родитель( лиз, X).
(c) ?- родитель( Y, пат), родитель( X, Y).
1.3
(a) счастлив( X) :-
родитель( X, Y).
(b) имеетдвухдетей( X) :-
родитель( X, Y),
сестра( Z, Y).
1.4
внук( X, Z) :-
родитель( Y, X),
родитель( Z, Y).
1.5
тетя( X, Y) :-
родитель( Z, Y),
сестра( X, Z).
1.6
Да. (Определение верно)
1.7
(a) возвратов не будет
(b) возвратов не будет
(c) возвратов не будет
(d) возвраты будут
2.1
(a) переменная
(b) атом
(c) атом
(d) переменная
(e) атом
(f) структура
(g) число
(h) синтаксически неправильное выражение
(i) структура
(j) структура
2.3
(a) успех
(b) неуспех
(c) неуспех
(d) D = 2, E = 2
(e) P1 = точка(-1, 0)
Р2 = точка( 1, 0)
Р3 = точка( 0, Y)
Такая конкретизация определяет семейство треугольников, у которых две вершины располагаются на оси
2.4
отр( точка( 5, Y1), точка( 5, Y2) )
2.5
регулярный( прямоугольник( точка( X1, Y1),
точка( Х2, Y1), точкa( X2, Y3),
точка( X1, Y3) ) ).
Здесь предполагается, что первая точка соответствует нижней левой вершине прямоугольника.
2.6
(a) А = два
(b) no
(c) С = один
(d) D = s(s(1));
D = s(s(s(s(s(1)))))
2.7
родственники( X, Y) :-
предок( X, Y);
предок( Y, X);
предок( Z, X),
предок( Z, Y);
предок( X, Z),
предок( Y, Z).
2.8
преобразовать( 1, один).
преобразовать( 2, два).
преобразовать( 3, три).
2.9
В случае, изображенном на рис. 2.10, пролог-система выполняет несколько больший объем