сравнения.
Мы проделаем с этой программой два эксперимента. Каждый из них обнаружит в ней свой источник неэффективности, и мы устраним оба этих источника по очереди, применив оператор отсечения.
5.1.1. Эксперимент 1
Проанализируем, что произойдет, если задать следующий вопрос:
?- f( 1, Y), 2 < Y.
Рис. 5.2. В точке, помеченной словом 'ОТСЕЧЕНИЕ', уже известно, что правила 2 и 3 должны потерпеть неудачу.
При вычислении первой цели f( 1, Y)
Y конкретизируется нулем. Поэтому вторая цель становится такой:
2 < 0
Она терпит неудачу, а поэтому и весь список целей также терпит неудачу. Это очевидно, однако перед тем как признать, что такому списку целей удовлетворить нельзя, пролог-система при помощи возвратов попытается проверить еще две бесполезные в данном случае альтернативы. Пошаговое описание процесса вычислений приводится на рис. 5.2.
Три правила, входящие в отношение f
, являются взаимоисключающими, поэтому успех возможен самое большее в одном из них. Следовательно, мы (но не пролог-система) знаем, что, как только успех наступил в одном из них, нет смысла проверять остальные, поскольку они все равно обречены на неудачу. В примере, приведенном на рис. 5.2, о том, что в правиле 1 наступил успех, становится известно в точке, обозначенной словом 'ОТСЕЧЕНИЕ'. Для предотвращения бессмысленного перебора мы должны явно указать пролог-системе, что !
', который вставляется между целями и играет роль некоторой псевдоцели. Вот наша программа, переписанная с использованием отсечения:
f( X, 0) :- X < 3, !.
f( X, 2) :- 3 =< X, X < 6, !.
f( X, 4) :- 6 =< X.
Символ '!
' предотвращает возврат из тех точек программы, в которых он поставлен. Если мы теперь спросим
?- f( 1, Y), 2 < Y.
то пролог-система породит левую ветвь дерева, изображенного на рис. 5.2. Эта ветвь потерпит неудачу на цели 2 < 0
. Система попытается сделать возврат, но вернуться она сможет не далее точки, помеченной в программе символом '!
'. Альтернативные ветви, соответствующие правилу 2 и правилу 3, порождены не будут.
Новая программа, снабженная отсечениями, во всех случаях более эффективна, чем первая версия, в которой они отсутствуют. Неудачные варианты новая программа распознает всегда быстрее, чем старая.
Вывод: добавив отсечения, мы повысили эффективность. Если их теперь убрать, программа породит тот же результат, только на его получение она истратит скорее всего больше времени. Можно сказать, что в нашем случае после введения отсечений мы изменили только процедурный смысл программы, оставив при этом ее декларативный смысл в неприкосновенности. В дальнейшем мы покажем, что использование отсечения может также затронуть и декларативный смысл программы.
5.1.2. Эксперимент 2
Проделаем теперь еще один эксперимент со второй версией нашей программы. Предположим, мы задаем вопрос:
?- f( 7, Y).
Y = 4
Проанализируем, что произошло. Перед тем, как был получен ответ, система пробовала применить все три правила. Эти попытки породили следующую последовательность целей:
7 < 3 терпит неудачу, происходит возврат, и попытка применить правило 2 (точка отсечения достигнута не была)
3 ≤ 7 успех, но 7 < 6 терпит неудачу; возврат и попытка применить правило 3 (точка отсечения снова не достигнута)
6 ≤ 7 — успех
Приведенные этапы вычисления обнаруживают еще один источник неэффективности. В начале выясняется, что X < 3
не является истиной (7 < 3 терпит неудачу). Следующая цель — 3 =< X
(3 ≤ 7 — успех). Но нам известно, что, если первая проверка неуспешна, то вторая обязательно будет успешной, так как второе целевое утверждение является отрицанием первого. Следовательно, вторая проверка лишняя и соответствующую цель можно опустить. То же самое верно и для цели 6 =< X
в правиле 3. Все эти соображения приводят к следующей, более экономной формулировке наших трех правил:
если X < 3, то Y = 0
иначе, если 3 ≤ X и X < 6, то Y = 2,
иначе Y = 4.
Теперь мы можем опустить в нашей программе те условия, которые обязательно выполняются при любом вычислении. Получается третья версия программы:
f( X, 0) :- X < 3, !.
f( X, 2) :- X < 6, !.
f( X, 4).
Эта программа дает тот же результат, что и исходная, но более эффективна, чем обе предыдущие. Однако, что будет, если мы
f( X, 0) :- X < 3.
f( X, 2) :- X < 6.
f( X, 4).
Она может порождать различные решения, часть из которых неверны. Например:
?- f( 1, Y).
Y = 0;
Y = 2;
Y = 4;
nо
(нет)
Важно заметить, что в последней версии, в отличие от предыдущей, отсечения затрагивают не только процедурное поведение, но изменяют также и декларативный смысл программы.
Более точный смысл механизма отсечений можно сформулировать следующим образом:
Назовем 'целью-родителем' ту цель, которая сопоставилась с головой предложения, содержащего