Bull was not in the business of winning a posthumous Congressional Medal. Moreover, he had already told the Israelis and his close friend George Wong that he wanted out of Iraq—physically and contractually. He had had enough. What happened to Dr. Gerry Bull was something quite different.

Gerald Vincent Bull was born in 1928 at North Bay, Ontario. At school he was clever and driven by an urge to succeed and earn the world’s approval. At sixteen he graduated from high school, but because he was so young the only college that would accept him was the University of Toronto Engineering Faculty. Here he showed he was not just clever but brilliant. At twenty-two he became the youngest-ever Ph.D. It was aeronautical engineering that seized his imagination, specifically ballistics—the study of bodies, whether projectiles or rockets, in flight. It was this that led him down the road to artillery.

After Toronto, he joined the Canadian Armament and Research Development Establishment, CARDE, at Valcartier, a then quiet little township outside Quebec City. In the early 1950s man was turning his face not only toward the skies but beyond them to space itself. The buzzword was rockets. It was then that Bull showed he was something apart from technically brilliant. He was a maverick—inventive, unconventional, and imaginative. It was during his ten years at CARDE that he developed his idea, which would become his life’s dream for the rest of his days.

Like all new ideas, Bull’s appeared quite simple. When he looked at the emerging range of American rockets in the late 1950s, he realized that nine-tenths of these then impressive-looking rockets were only the first stage. Sitting right on top, only a fraction of the size, were the second and third stages and, even smaller, the tiny nipple of the payload.

The giant first stage was intended to lift the rocket up through the first 150 kilometers of air, where the atmosphere was thickest and gravity strongest. After the 150-kilometer mark, it needed much less power to drive the satellite on into space itself, and into orbit at between 400 and 500 kilometers above the earth. Every time a rocket went up, the whole of that bulky and very expensive first stage was destroyed—burned out, to fall forever into the oceans.

Supposing, Bull mused, you could punch your second and third stages, plus the payload, up those first ISO kilometers from the barrel of a giant gun? In theory, he pleaded with the money men, it was possible, easier, and cheaper, and the gun could be used over and over again.

It was his first real brush with politicians and bureaucrats, and he failed, mainly because of his personality. He hated them, and they hated him. But in 1961 he got lucky. McGill University came in because it foresaw some interesting publicity. The U.S. Army came in for reasons of its own; guardian of American artillery, the Army was in a power play with the Air Force, which was battling for control over all rockets or projectiles going above 100 kilometers. With their combined funds, Bull was able to set up a small research establishment on the island of Barbados. The Army let him have a package of one out-of-storage sixteen-inch Navy gun (the biggest caliber in the world), one spare barrel, one small radar tracking unit, a crane, and some trucks. McGill set up a metal workshop. It was like trying to take on the Grand Prix racing industry with the facilities of a back-street garage. But Bull did it. His career of amazing inventions had begun, and he was thirty-three years old: shy, diffident, untidy, inventive, and still a maverick.

He called his research in Barbados the High Altitude Research Project, or HARP. The old Navy gun was duly erected, and Bull began work on projectiles. He called them Martlet, after the heraldic bird that appears on the insignia of McGill University.

Bull wanted to put a payload of instruments into earth orbit cheaper and faster than anyone else. He knew perfectly well that no human could withstand the pressures of being fired from a gun, but he figured rightly that in the future ninety percent of scientific research and work in space would be done by machines, not men. America under Kennedy, goaded by the flight of the Russian Yuri Gagarin, pursued from Cape Canaveral the more glamorous but ultimately rather pointless exercise of putting mice, dogs, monkeys, and eventually men up there.

Down in Barbados, Bull soldiered on with his single gun and his Martlet projectiles. In 1964 he blew a Martlet 92 kilometers high, then added an extra 16 meters of barrel to his gun (it cost just $41,000), making the new 36- meter barrel the longest in the world. With this, he reached the magic 150 kilometers with a 180-kilogram payload.

He solved the problems as they arose. A major one was the propellant.

In a small gun the charge gives the projectile a single hard smack as it expands from solid to gas in a microsecond. The gas tries to escape its compression and has nowhere to go but out of the barrel, pushing the shell ahead of it as it does so. But with a barrel as long as Bull’s, a special, slower-burning propellant was needed not to split the barrel wide open. He needed a powder that would send his projectile up this enormous barrel in a long, steadily accelerating whoosh. So he designed it.

In 1966, Bull’s old adversaries among the Canadian Defense Ministry bureaucrats got him by urging their minister to pull his financing. Bull protested that he could put a payload of instruments into space for a fraction of what it cost Cape Canaveral. To no avail. To protect its interest, the U.S. Army transferred Bull from Barbados to Yuma, Arizona.

Here, in November of that year, he put a payload 180 kilometers up, a record that stood for twenty-five years. But in 1967, Canada pulled out completely, both the government and McGill University. The U.S. Army followed suit. The HARP project closed down. Bull set himself up on a purely consultative basis at an estate he had bought at Highwater that straddled the border of northern Vermont and his native Canada. He called his company Space Research Corporation.

There were two postscripts to the HARP affair. By 1990, it was costing ten thousand dollars to put every kilogram of instruments into space in the Space Shuttle program out of Cape Canaveral. To his dying day, Bull knew he could do it for six hundred dollars per kilo.

And in 1988 work began on a new project at Lawrence Livermore National Laboratory in California. The project involved a giant gun, but so far with a barrel only four inches in caliber and a barrel only fifty meters long. Eventually, and at a cost of hundreds of millions of dollars, it is hoped that a much, much bigger one will be built, with a view to firing payloads into space. The project’s name is Super-High Altitude Research Project, or SHARP.

Gerry Bull lived in and ran his complex at Highwater on the border for ten years. In that time he dropped his unfulfilled dream of a gun that would fire payloads into space and concentrated on his second area of expertise—the more profitable one of conventional artillery.

He began with the major problem: Almost all the world’s armies based their artillery on the universal 155- mm. howitzer field gun. Bull knew that in an artillery exchange, the man with the longer range is king. He can sit back and blow the enemy away while remaining inviolate. Bull was determined to extend the range and increase the accuracy of the 155-mm. field gun. He started with the ammunition. It had been tried before, but no one had succeeded. In four years Bull cracked it.

In control tests the Bull shell went one and a half times the distance as the same 155-mm. standard gun, was more accurate, and exploded with the same force into 4,700 fragments, as opposed to 1,350 for a NATO shell. NATO was not interested. By the grace of God, neither was the Soviet Union.

Undeterred, Bull plowed on, producing a new full-bore extended-range shell. Still NATO was not interested, preferring to stay with its traditional suppliers and the short-range shell.

But if the powers would not look, the rest of the world did. Military delegations swarmed to Highwater to consult Gerry Bull. They included Israel (this was when he cemented friendships begun with observers in Barbados), Egypt, Venezuela, Chile, and Iran. He also acted as a consultant on other artillery matters to Britain, Holland, Italy, Canada, and the United States, whose military scientists (if not the Pentagon) continued to study with some awe what he was up to.

In 1972, Bull was quietly made a U.S. citizen. The next year, he began work on the actual 155-caliber field gun itself. Within two years he had made another breakthrough, discovering that the perfect length for a cannon barrel is neither more nor less than forty-five times its caliber. He perfected a new redesign of the standard 155- mm. field gun and called it the GC (for gun caliber) 45. The new gun, with his extended-range shells, would outgun any artillery in the entire Communist arsenal. But if he expected contracts, he was disappointed.

Again, the Pentagon stayed with the gun lobby and its new idea for rocket-assisted shells at eight times the price per shell. The performance of both shells was identical.

Bull’s fall from grace, when it came, started innocently enough in 1976, when he was invited with CIA

Вы читаете The Fist of God
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату