expectations. Nevertheless, I must refrain from traveling to Gottingen for the moment ...I am tired out and plagued by stomach pains . . . If possible, please send me a correction proof of your study to mitigate my impatience.”77

Fortunately for Einstein, his anxiety was partly alleviated that week by a joyous discovery. Even though he knew his equations were not in final form, he decided to see whether the new approach he was taking would yield the correct results for what was known about the shift in Mercury’s orbit. Because he and Besso had done the calculations once before (and gotten a disappointing result), it did not take him long to redo the calculations using his revised theory.

The answer, which he triumphantly announced in the third of his four November lectures, came out right: 43 arc-seconds per century.78 “This discovery was, I believe, by far the strongest emotional experience in Einstein’s scientific life, perhaps in all his life,” Abraham Pais later said. He was so thrilled he had heart palpitations, as if “something had snapped” inside. “I was beside myself with joyous excitement,” he told Ehrenfest. To another physicist he exulted: “The results of Mercury’s perihelion movement fills me with great satisfaction. How helpful to us is astronomy’s pedantic accuracy, which I used to secretly ridicule!”79

In the same lecture, he also reported on another calculation he had made. When he first began formulating general relativity eight years earlier, he had said that one implication was that gravity would bend light. He had previously figured that the bending of light by the gravitational field next to the sun would be approximately 0.83 arc-second, which corresponded to what would be predicted by Newton’s theory when light was treated as if a particle. But now, using his newly revised theory, Einstein calculated that the bending of light by gravity would be twice as great, because of the effect produced by the curvature of spacetime. Therefore, the sun’s gravity would bend a beam by about 1.7 arc-seconds, he now predicted. It was a prediction that would have to wait for the next suitable eclipse, more than three years away, to be tested.

That very morning, November 18, Einstein received Hilbert’s new paper, the one that he had been invited to Gottingen to hear presented. Einstein was surprised, and somewhat dismayed, to see how similar it was to his own work. His response to Hilbert was terse, a bit cold, and clearly designed to assert the priority of his own work:

The system you furnish agrees—as far as I can see—exactly with what I found in the last few weeks and have presented to the Academy. The difficulty was not in finding generally covariant equations ...for this is easily achieved with Riemann’s tensor . . . Three years ago with my friend Grossmann I had already taken into consideration the only covariant equations, which have now been shown to be the correct ones. We had distanced ourselves from it, reluctantly, because it seemed to me that the physical discussion yielded an incongruity with Newton’s law. Today I am presenting to the Academy a paper in which I derive quantitatively out of general relativity, without any guiding hypothesis, the perihelion motion of Mercury. No gravitational theory has achieved this until now.

80

Hilbert responded kindly and quite generously the following day, claiming no priority for himself. “Cordial congratulations on conquering perihelion motion,” he wrote. “If I could calculate as rapidly as you, in my equations the electron would have to capitulate and the hydrogen atom would have to produce its note of apology about why it does not radiate.”81

Yet the day after, on November 20, Hilbert sent in a paper to a Gottingen science journal proclaiming his own version of the equations for general relativity. The title he picked for his piece was not a modest one. “The Foundations of Physics,” he called it.

It is not clear how carefully Einstein read the paper that Hilbert sent him or what in it, if anything, affected his thinking as he busily prepared his climactic fourth lecture at the Prussian Academy. Whatever the case, the calculations he had done the week earlier, on Mercury and on light deflection, helped him realize that he could avoid the constraints and coordinate conditions he had been imposing on his gravitational field equations. And thus he produced in time for his final lecture—“The Field Equations of Gravitation,” on November 25, 1915—a set of covariant equations that capped his general theory of relativity.

The result was not nearly as vivid to the layman as, say, E=mc2. Yet using the condensed notations of tensors, in which sprawling complexities can be compressed into little subscripts, the crux of the final Einstein field equations is compact enough to be emblazoned, as it indeed often has been, on T-shirts designed for proud physics students. In one of its many variations,82 it can be written as:

The left side of the equation starts with the term Rmn, which is the Ricci tensor he had embraced earlier. The term gmn is the all-important metric tensor, and the term R is the trace of the Ricci tensor called the Ricci scalar. Together, this left side of the equation—which is now known as the Einstein tensor and can be written simply as Gmn—compresses together all of the information about how the geometry of spacetime is warped and curved by objects.

The right side describes the movement of matter in the gravitational field. The interplay between the two sides shows how objects curve spacetime and how, in turn, this curvature affects the motion of objects. As the physicist John Wheeler has put it, “Matter tells space-time how to curve, and curved space tells matter how to move.”83

Thus is staged a cosmic tango, as captured by another physicist, Brian Greene:

Space and time become players in the evolving cosmos. They come alive. Matter here causes space to warp there, which causes matter over here to move, which causes space way over there to warp even more, and so on. General relativity provides the choreography for an entwined cosmic dance of space, time, matter, and energy.

84

At last Einstein had equations that were truly covariant and thus a theory that incorporated, at least to his satisfaction, all forms of motion, whether it be inertial, accelerated, rotational, or arbitrary. As he proclaimed in the formal presentation of his theory that he published the following March in the Annalen der Physik, “The general laws of nature are to be expressed by equations that hold true for all systems of coordinates, that is they are covariant with respect to any substitutions whatever.”85

Einstein was thrilled by his success, but at the same time he was worried that Hilbert, who had presented his own version five days earlier in Gottingen, would be accorded some of the credit for the theory. “Only one colleague has really understood it,” he wrote to his friend Heinrich Zangger, “and he is seeking to nostrify it (Abraham’s expression) in a clever way.” The expression “to nostrify” (nostrifizieren), which had been used by the Gottingen-trained mathematical physicist Max Abraham, referred to the practice of nostrification by which German universities converted degrees granted by other universities into degrees of their own. “In my personal experience I have hardly come to know the wretchedness of mankind better.” In a letter to Besso a few days later, he added, “My colleagues are acting hideously in this affair. You will have a good laugh when I tell you about it.”86

So who actually deserves the primary credit for the final mathematical equations? The Einstein-Hilbert priority issue has generated a small but intense historical debate, some of which seems at times to be driven by passions

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату