together as a working reality. My newfound knowledge, while only paper thin, was as good as anyone else’s. It was now time to put it to the test. I called Kraft and said the countdown and the operational rules were ready.
Shortly before the rest of the team that would be involved in the first launch arrived from Langley, I made a thoughtful walk-through inspection of the relatively small—in comparison to later control centers—space that contained the operating elements of Mercury Control.
When a fighter pilot arrives at a base the first thing he does is go down to the flight line and look at the new airplane he is going to fly. You walk around it, feel the skin, climb up on the wing, and look in the cockpit, knowing that soon this airplane is going to be yours. It is a time when you feel a bit cocky, knowing that you are one of the few who will be privileged to live in this highly charged new world of high-speed flight.
I felt the same way on my solitary walk around the Mercury control room; I felt like I was meeting an airplane. I was, at long last, feeling at home. The telemetry, communications, and display areas were like the facilities at Holloman, but there was no counterpart for the control room itself. The room was square, about sixty feet on each side, dominated by a world map in the front. The map contained a series of circles, bull’s-eyes centered on the worldwide network of tracking stations. Below each were boxes containing many different and, for the uninitiated, unintelligible symbols. A toylike spacecraft model, suspended by wires, moved across the map to trace the orbit. On each side of the map were boards, where sixteen critical measurements were plotted by sliding beads, like those on an abacus, up and down wires as the capsule circled the world. In less than four years much of this technology would be obsolete—only the concept of Mission Control would remain. The meters and console displays would eventually be replaced by television displays driven by computers, which provided the controllers virtually instantaneous access to every bit (or byte) of the spacecraft’s data. Digital systems would enable ground control of the space systems. This would make it possible for controllers on the ground to work in partnership with a spacecraft’s crew to achieve the objectives of any flight. But this was yet to come; now we had to control the missions with fragile communications, a first-generation solid-state computer, slide rules, and guts. We were in the Lindbergh stage of spaceflight.
Given my aircraft test flight background, the control room felt vaguely familiar, with the exception of the three rows of consoles on elevated platforms. Each console was configured differently. Consoles on the top row were flat pedestals with communications boxes on top. When I first arrived at the Cape, Paul Johnson had taken me on a tour of the control room and pointed out the procedures console. I sat at the console, staring at the flat gray face and writing desk. The only instruments were a clock and an intercom panel with a rotary (!) phone at the top. This was the state-of-the-art work station that Paul and his colleagues from Western Electric had designed from scratch. It was on the left, in the middle row, and closest to the Teletype room. As I sat down at my console, two people came over and introduced themselves.
Andy Anderson, tall and skinny with long, sandy hair, was the boss of the communications center. His hotshot Teletype operator, a short red-head with a brush cut, was simply “Eshelman.” No one called him anything else. During a launch, I reeled off a running account of key data on the sequence of events to Eshelman, who typed them out and transmitted them by landline and radio links to remote tracking stations in Bermuda, Africa, Australia, and distant islands and ships in the Atlantic and Pacific. Eshelman had the skill and grace of a concert pianist as he stood, intently bent over the Teletype keyboard, interacting in real time with the Bermuda Teletype operator, just as if they were having a conversation. The tools we used in Mercury were primitive, but the dedication of highly trained people offset the limitations of the equipment available to us in these early days and kept the very real risks under control. But at a price; this was high-sweat, high-risk activity, demanding a degree of coordination between the ground and the capsule exceeding what I had experienced even in the testing of experimental aircraft.
During the next two years, Anderson, Eshelman, and I controlled virtually all the Teletype message traffic originating from Mercury Control at the Cape. This was the heart of the ground control system, tied to that tenuously linked chain of tracking stations and manned remote sites by a variety of communications systems. Low- speed Teletype provided the backbone, and the controllers became adept at moving messages rapidly between the tracking sites as the spacecraft passed overhead.
The tracking network voice system used a massive manual switchboard up at Goddard; its operator plugged cables into a bewildering assortment of jacks as he performed a frenetic ballet. He carried a thick bundle of cables wrapped around his arm, darting from one part of the big switchboard to another, making connections manually so we could talk to tracking sites and working around bad circuits to provide alternative connections. This remarkable guy, known as “Goddard voice,” was another guardian angel.
Since we never knew whether every link had heard the voice exchanges, as a cross-check I transcribed every major communication into a Teletype message. We didn’t have computers in Mercury Control. So the radar information from the launch, orbit, and reentry was transmitted by tracking sites around the world to the computers at Goddard for processing, and then sent down to drive the plot boards in Mercury Control. Advanced as they were at the time, and filling whole large rooms, those computers had a speed and processing capacity easily exceeded by desktop PCs today. So our margins for error were made even thinner by the limitations of these resources.
While waiting for Kraft’s full team to arrive from Langley I explored everything from the launch pad to Hangar S, where they checked out the spacecraft prior to launch. I was welcomed everywhere by engineers and technicians who were as new to their jobs as I was. All of them were eager to discuss their work, trade ideas, and figure out how each of us fit into the total picture. I felt that I was not alone, that virtually everyone was writing their game plan as they went along. I felt an undercurrent of organization that was emerging from a leadership structure still solidifying.
By the time Kraft and the rest arrived at the Cape, I was no longer feeling like a rookie. I had spent every available moment in Mercury Control, prowling through the room and listening to the check-out, observing how the technicians handled communications with “Goddard voice,” the tracking stations, and the blockhouse.
Project Mercury was literally having trouble getting off the ground. In August of 1960, after the first Mercury-Atlas exploded in flight, the major journal in the aerospace business,
The testing of the Mercury capsule escape system was carried out at the Wallops Island Station just below the Maryland-Virginia border. This was a Langley test facility for all sorts of “sounding,” or high-altitude research rockets. The tests of the escape system were about 50 percent successful. While we were getting ready at the Cape, one of the Mercury tests at Wallops failed spectacularly on November 8. Sixteen seconds after launch the escape and jettison rockets fired prematurely, thus leaving the capsule attached to the booster rocket, which reached a ten-mile apex and then came screaming back to Earth, destroying the capsule at impact.
The Mercury program used two booster rockets—the Redstone and the Atlas. Both were derivatives of military systems but with vastly different capabilities. The Redstone was an Army battlefield rocket. It would be used to start the capsule systems qualification test flight and, if that was successful, for two ballistic manned missions. The ballistic missions were to be about twenty minutes in duration, reaching a maximum altitude of about 130 miles and providing a short weightless period before reentry. The Atlas was an Air Force intercontinental missile and was to be used for both ballistic and orbital Mercury missions. The first three missions were ballistic, to continue the booster and capsule qualification, test the tracking network, and provide experience for the MCC team. The orbital testing would continue the qualification testing using the mechanical man and a chimpanzee before the manned orbital flights.
When Mercury-Atlas 1 exploded in flight, we fell about one year behind in the schedule, so a lot was riding on the first Mercury-Redstone flight, MR-1. Kraft’s team arrived on November 13 for the MR-1 launch, now only eight days away. Once again my guardian angel, Johnson, arrived to save my bacon. He took a place to the right of the console and punched up the buttons of the intercom during our simulation dress rehearsal.
Immediately, a half dozen different conversations flooded through my headset. It reminded me of the cool, almost casual but terse and clear voice chatter that came up on the tactical frequency when things heated up during the time I was in Korea directing air strikes on ground targets. As I listened, I picked up the voices of the test conductors. Johnson broke out some thick documents and advised Kraft of the page and sequence of the countdown. It was fortunate that this was just a test. It gave Johnson a chance to brief me on the countdown process, get to know the people talking on the loops and Mercury Control’s role in the test.