Ironically, today the German Imperial Air Service is best remembered for 'unstealth' airplanes, such as those of Baron von Richthofen's Flying Circus. Man-fred was known as the 'Red Baron' because his DRI triplane was painted red. His brother Lothar's was red and yellow, while the squadron's other planes wore similar bright colors. The goal was not invisibility, but to be seen. This built unit morale, allowed the pilots to keep track of each other in the swirl of combat, and to in-timidate. The flashy finishes announced this wasn't an ordinary squadron. If the British pilots went into battle, they did so on the psychological defensive. If they broke off, then the German pilots had won without fighting.

Among the lessons of the first World War was the importance of air power. Although the amount of damage done by the German Zeppelin and bomber raids was, in retrospect, minor, but they had a great psychological impact. Bomber fleets were seen as the weapon of the future. The bombers would always get through, deci-mating their targets with chemical weapon attacks. Some experts predicted that each air raid would kill tens of thousands of civilians, and within a few days there would be millions of casualties. The horrors of the Western Front would be inflicted on civilians, who would be left psychologically devastated. The appeasement of Hitler in the late 1930s was based, in part, on visions of this as the fate of London and Paris.

What this apocalyptic vision assumed was the continued lack of a long-range detection capability. As long as incoming raids could only be tracked visually, bombers held the advantage. Interceptors would have to hunt for the bombers, and the probability of successfully engaging them was low prior to striking the target.

The development of radar in the late 1930s changed the nature of the threat aircraft faced. Radar could provide early warning of incoming bombers. As the formations flew towards their targets, radar plotted their course, and fighter units ahead of them were alerted to take off. The controllers could then guide the fighters to intercept the bombers. It was the fighters which now held the advantage.

Because of radar, the air war over Europe was not the kind of devastating thun-derbolt envisioned before the war, but, rather, a grim war of attrition. Even as the Allied bomber force grew in size and experience, and new aircraft and technology were introduced, German air defenses expanded to keep up. New fighter squadrons were added, the radar network was enlarged, and more flak guns were deployed.

The price paid by Allied bomber crews was high — the loss rate among U.S. Army Air Forces bomber crews was higher than that of the infantry — while Royal Air Force's Bomber Command suffered losses higher that those of British Army ju-nior officers in World War I. At the same time, their attacks were a Second Front in the air, drawing off fighters, guns, fuel, and soldiers from the battle fields.

The need facing the offensive air forces was to develop a means to hide the bomber formation from radar. The technology selected was brute-force jamming of the radar echos, and dropping chaff to fill the screen with masses of false echos.

Air defenses attempted to counter these efforts with more sophisticated technology and experience. The countermeasures equipment aboard the aircraft was also improved, to meet the changes in air defenses. This on- going struggle between aircraft and air defenses became the pattern for the future.

Ironically, the ability of radar to detect aircraft at long range, and the attempts by the aircraft to drown out the echos, meant that visual camouflage lost its importance. From the latter part of 1944 onward, U.S. Army Air Forces bombers and fighters were no longer painted in camouflage colors, but, rather, flew in bare-metal finishes. The U.S. Air Force continued this practice through the Korean War, and into the early years of the Vietnam War. The planes often carried colorful unit markings. It was not until 1966/1967 that camouflage again became standard.

It was also during World War II that the modern concept of 'Black Projects'

originated. This was a fundamentally different kind of security than that normally conducted by the military. It involved keeping secret, for example, the speed, altitude, range, and bomb load of a new aircraft. With the Allied efforts to break German and Japanese codes, or to develop an atomic bomb, however, the existence of these projects had to be kept hidden from all but a select few. The strategic advantages these technological breakthroughs gave the Allies would be lost if the Axis powers were to gain even a hint that they had been made. The result was a realization that, with some projects, it was not enough to hold a technological advantage over a potential enemy, it was also necessary to keep that advantage unknown to them.

The start of the Cold War brought the first stirrings of stealth. To gain intelligence on the USSR, it was necessary to undertake covert overflights of its territory and that of its allies. To be both effective and politically useful, these overflights would have to remain unknown to the Soviets. It was a violation of international treaties to fly a plane in another nation's airspace in peacetime. If the overflights were detected, the Soviets would make every effort to shoot the planes down. Even if this failed, the inevitable Soviet protest would cause political problems.

The need for the overflights to remain undetected by the Soviets was thought to be satisfied by designing an aircraft able to fly at altitudes of 70,000 feet or greater, something that could be done with existing aviation technology. This placed the aircraft above the reach of Soviet jet fighters, and, it was believed, would also make the plane difficult to detect by Soviet radar. U.S. radar had great difficulty spotting a target at an altitude of over 40,000 feet at a range of 200 miles. During World War II, American radar had been supplied to the Soviets, and, it was assumed, their radar would have similar problems tracking a high-flying target. It was on this basis that President Eisenhower gave approval for development of the U-2. The theory seemed to be confirmed when U-2 training flights began over the United States. Even with advanced notice, it was difficult to spot the U-2, much less track it.[850]

Yet, on the first U-2 overflight of the Soviet Union, the Soviets were not only able to spot the U-2, but to track the plane and send MiG fighters after it. What had not been realized was that Soviet radar design had advanced considerably over those of World War II. The detection of the U-2 adversely effected the overflight program. The assumption had been that the Soviets would only detect a few unknown radar targets, and would not understand what was occurring. The Soviet's ability to track the U-2 changed both the threat to the aircraft, and what was needed to counter it. For the first time, an aircraft's Radar Cross Section (RCS) had to be reduced.

Since the early days of radar, it had been known that not all aircraft echos were equal. Rather, they would vary according to the frequency of the radar, as well as the size, shape, and orientation of the plane. The problem was in the technology; the available means of analyzing a plane's RCS was no better than 'cut and try.'

The first attempt, Project Rainbow, with its radar absorbing coatings, and special wires extending from the nose and tail to the wingtips, was disappointing. The wires and coating were effective at some radar wavelengths, while at others they actually increased the plane's RCS. The need was understood, but the technology to meet it was lacking. The best that could then be done was to paint the U-2 with the sinister-looking black iron ferrite-based paint. This reduced its RCS to a limited extent, and made the plane harder to spot.

The various reconnaissance aircraft which followed the U-2 had to rely on a mixture of techniques to escape destruction. The A-12 Oxcart depended on altitude, speed, a low RCS and countermeasures. The A-12's altitude put it on the fringe of a Surface-to-Air Missile's (SAM) envelope, while its speed cut the time the SAM

had to engage the aircraft. This, along with the low RCS made the A-12 difficult to track and to gain a radar lock-on for firing. Should a lock-on be made, then the countermeasures would break it.

During the development program, the air force was worried that if an A-12 carrying existing countermeasures equipment was lost over hostile territory, this would compromise the systems used by U.S. fighters and bombers. Even if the countermeasures equipment was only similar, the Soviets would have an insight into U.S.

designs. The CIA started Project Kempster, which tried to develop ion guns that would be mounted on the A-12. These would ionize the thin air in front of the plane, which would reduce its RCS. (The phrase 'Cloaking Device' comes to mind.) Kempster proved unsuccessful, and more conventional systems were developed for the A-12.[851]

In contrast, the Model 147 drone initially used radar-absorbing blankets, a contrail suppression device, and the now-standard black paint. The Lightning Bug's maximum altitude of between 50,000 and 65,000 feet, and a subsonic speed, placed it within reach of both MiGs and SAMs, but their small size made the drones difficult to 'squash.' The later model Lightning Bugs carried additional equipment to jam missile radar, and a device that caused the drone to take evasive maneuvers when illuminated by a MiG's radar. Despite the accomplishments of these aircraft, the inability of the available technology to meet the political need for an undetectable aircraft eliminated any possibility they would be used over the Soviet Union.

SAMS AND STEALTH

While for the Dark Eagles a reduced RCS was a critical design feature, this did not figure in the design of

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату