деталь философии Парменида, как конечность [21] и сферичность бытия, тоже встречает в современной космологии благожелательный прием.

Другое дело, что принятие основных выводов философии элеатов (терминологические расхождения не в счет) происходит в науке неосознанно. Далеко не все физики и математики даже слышали о Пармениде, хотя, быть может, имя Зенона им более известно. Современная наука взяла на вооружение главный тезис элеатов, состоящий в противопоставлении чувственного знания и знания умопостигательного. Желая описать при помощи математики какое-либо явление природы, ученые меньше всего склонны при этом обращать внимание на соответствие принятых теоретических допущений данным восприятия и даже эксперимента. Например, допущение в современной математике и физике бесконечных структур, весьма проблематичных с точки зрения эмпирического оправдания, приобрело поистине повальный характер. Так, время сплошь и рядом отождествляют с множеством действительных чисел, количество которых не только бесконечно, но и несчетно. Явно дискретная структура нашего опыта никак не сказывается на масштабах применения в физике непрерывных образований (вроде только что упоминавшейся действительной прямой) и т. д. – количество примеров легко умножить…

Цит. по Анисов А. М. Апории Зенона и проблема движения // Труды научно- исследовательского семинара Логического центра Института философии РАН / РАН. Ин-т философии, Обществ. ин-т логики, когнитологии и развития личности. – М., 2000. – Вып. 14 / Редкол.: А. С. Карпенко (отв. ред.) и др. – Стр. 139-153.

,

Примечания

1

См., напр., Войшвилло Е. К. Еще раз о парадоксе движения о диалектических и формально-логических противоречиях // «Философские науки», 1964, № 4.

2

Вряд ли в данном случае стоит разделять оптимизм А. М. Анисова, поскольку о пространстве и времени, а следовательно, и о движении мы знаем отнюдь не больше, чем древние греки. Научные теории, которые, как правило, дают нам новые знания, давным-давно отошли от проблемы движения и со времен Галилея движением называют “продвинутость”. Сама же проблема движения осталась за рамками науки. (Руслан Хазарзар.)

3

Действительно, апория Ахилл и черепаха известна нам прежде всего в формулировке Аристотеля (Физика, 29 А 26 DK): “Самый быстрый бегун никогда не догонит самого медленного, т. к. догоняющий должен прежде достичь того места, откуда сдвинулся убегающий, так что более медленный всегда будет чуть впереди”. На это оппоненты Зенона, как правило, возражают: “Почему это “всегда будет чуть впереди”? Пусть скорость первого – 10 м/с, второго – 5 м/с, начальная дистанция между ними – 5 м. Тогда через 2 секунды более быстрый бегун будет на 5 м впереди, следовательно, слово “всегда” неверно”.

Поистине удивительно, как разум может запутывать себя в догматическом нежелании признать свою слабость: “всегда (черепаха впереди)”, “никогда (Ахилл не догонит)” – не значит бесконечное течение времени. Согласно апориям, и время не превысит своего предела. А парадокс не опровергается его констатацией. Констатацией он как раз утверждается. К сожалению, многих настолько приучили опровергать путем приведения к противоречию, что они и сами противоречия (парадоксы) готовы “опровергать” подобным же образом. Ведь можно переформулировать апорию следующим образом: “Никогда не пройдет одна секунда, ибо когда пройдет полсекунды, останется полсекунды, когда пройдет половина полсекунды (?), останется ? секунды…” и т. д. Как же действительно опровергается парадокс? Он опровергается демонстрацией того, за счет чего он существует. Т. е. необходимо указать принципиально неверное утверждение в рассуждениях Зенона, а не демонстрировать путем других рассуждений или эмпирики, что Зенон пришел к противоречию – Зенон об этом и сам прекрасно знал и сам же об этом говорил. Наконец, формулировку апории можно изменить, не меняя ее сути: “Самый быстрый бегун не сможет догнать самого медленного (хотя при этом он не будет прекращать движения), ибо догоняющий должен прежде достичь того места, откуда сдвинулся убегающий, так что более медленный будет впереди”. (Руслан Хазарзар.)

4

Гильберт Д., Бернайс П. Основания математики. Логические исчисления и формализация арифметики. М., 1979. С. 40.

5

Цит. по Даан-Дальмедико А., Пенффер Ж. Пути и лабиринты. Очерки по истории математики. М., 1986. С. 237.

6

Сидоренко Е. А. Логические выводы доказательства и теория дедукции // Логика научного познания. М., 1987. С. 92. Недавно автор вновь подтвердил свою позицию. См.: Сидоренко Е. А. О парадоксах и о том, как Ахиллу догнать черепаху // «Философские исследования», № 3. М., 1999.

7

Как остроумно заметила по этому поводу Л. Н. Евтушенко, пусть каждый гонится за своей черепахой. Ведь если можно вводить Черепаху-1 и Черепаху-2, то почему нельзя ввести Ахилла-1 и Ахилла-2?

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату