методах используются процессы подгонки, или обучения, включающие выбор удобных входных сигналов для [c.34] черного и белого ящиков и сравнение этих ящиков. И во многих из них, в том числе в методе проф. Габора, важную роль играют перемножающие устройства.
Хотя имеется много способов электрического перемножения двух функций, задача эта технически нелегкая. С одной стороны, хороший перемножитель должен работать в широком диапазоне амплитуд. С другой стороны, он должен быть настолько быстродействующим, почти мгновенным, чтобы работать точно на высоких частотах. Габор утверждает, что его перемножитель работает в диапазоне частот примерно до 1000
Все эти системы, в которых некоторое устройство приобретает определенную структуру или функцию на основании прошлого опыта, приводят к весьма интересному новому подходу как в технике, так и в биологии. В технике устройства такого рода можно применять для того, чтобы не только проводить игры и другие целевые действия, но и постоянно совершенствовать при этом свое поведение на основании прошлого опыта. Я рассмотрю некоторые из этих возможностей в гл. IX настоящей книги. В биологическом плане перед нами по меньшей мере аналог того, что, быть может, составляет центральное явление жизни. Для существования наследственности и для размножения клеток необходимо, чтобы ответственные за наследственность компоненты клеток — так называемые гены — были способны строить по своему образу другие подобные, ответственные за наследственность структуры. Поэтому было бы весьма заманчиво найти способ, посредством которого технические устройства могли бы производить другие устройства с функциями, подобными их собственным. Я отведу этому вопросу гл. X, где, в частности, будет рассмотрено, каким путем колебательные системы данной частоты могут привести другие колебательные системы к той же частоте. [c.35]
Часто утверждают, что создание молекул данного вида по образу существующих молекул аналогично применению шаблонов в технике, которое позволяет использовать функциональный элемент машины как эталон для изготовления другого подобного элемента. Образ шаблона статичен, а молекула гена должна производить другую молекулу посредством некоторого процесса. Я делаю пробное предположение, что образцовыми элементами, определяющими индивидуальность биологических веществ, могут быть частоты, скажем, частоты молекулярных спектров, а самоорганизация генов может быть проявлением самоорганизации частот, которую я рассмотрю дальше.
Я говорил уже в общих чертах об обучающихся машинах. Я отведу особую главу для более подробного рассмотрения этих машин, их возможностей и некоторых проблем их использования. Пока же хочется сделать несколько замечаний общего характера.
Как мы увидим в гл. I, понятие обучающихся машин столь же старо, как и сама кибернетика. В случае описанных мною приборов управления артиллерийским зенитным огнем линейные характеристики предсказывающего устройства, используемого в данное время, зависят от долговременного знакомства со статистиками ансамбля тех временных рядов, которые мы хотим предсказать. Эти характеристики можно найти математически. по изложенным там принципам, но вполне возможно придумать вычислительную машину, которая будет собирать эти статистики и вырабатывать кратковременные характеристики предсказывающего устройства на основании опыта, уже пережитого самим предсказывающим устройством и записываемого автоматически. Это может пойти гораздо дальше чисто линейного предсказывающего устройства. В ряде статей Каллианпура, Мазани, Акутовича и моих[86] развита [c.36] теория нелинейного предсказания, которую можно, по крайней мере в принципе, механизировать аналогичным образом, с использованием долговременных наблюдений как статистической основы для кратковременного предсказания.
Обе теории предсказания — линейного и нелинейного — предполагают определенные критерии качества предсказания. Простейший, хотя отнюдь и не единственный пригодный, — это критерий наименьшей среднеквадратической ошибки. Он применяется здесь в частном виде с функционалами броунова движения, использованными мною для синтеза нелинейных устройств, поскольку различные члены моего разложения имеют некоторые свойства ортогональности. Эти свойства гарантируют, что частичная сумма конечного числа членов дает наилучшую имитацию рассматриваемого устройства, какая только может быть получена с этими членами при указанном критерии. Метод Габора также основан на среднеквадратическом критерии ошибки, но в более общем виде, пригодном для временных рядов, полученных из опыта.
Понятие обучающихся машин можно распространить на гораздо более широкую область, нежели предсказывающие устройства, фильтры и тому подобные приборы. Особенно важно оно для изучения и конструирования машин, играющих в игры со встречными интересами, как, например, в шашки. Здесь интересную работу выполнили Сэмьюэл[87] и Ватанабе[88] в лабораториях фирмы «Интернешнел Бизнес Машине». Как и в случае фильтров и предсказывающих устройств, здесь подбираются какие-то функции временных рядов, на которые можно разложить функции гораздо более широкого класса. Выбранные функции могут включать численные оценки существенных величин, от которых зависит успех игры. Например, они включают число фигур с обеих сторон, господство над пространством, подвижность и т. д. В начале работы машины этим факторам даются пробные [c.37] веса, и машина выбирает допустимый ход, имеющий наибольший общий вес. Эти действия машина проводит по жесткой программе, без какого-либо оборудования.
Но время от времени машина переходит к другой задаче. Она пробует разложить функцию, равную 1 при выигрыше, 0 при проигрыше и, положим, 1/2 при ничьей, по различным функциям, выражающим факторы, которые машина способна учитывать. Тем самым она заново определяет вес этих факторов, чтобы вести затем более сложную игру. Некоторые свойства таких машин будут рассмотрены в гл. IX, здесь же я должен сказать, что применение подобных оценок позволяет машине обыграть своего программиста после 10—20 часов обучения и тренировки. Я также упомяну в этой главе о некоторых аналогичных машинах, предназначенных для доказательства геометрических теорем и для имитации — в ограниченной степени — логики индукции.
Вся эта работа составляет часть теории и практики двойного программирования[89], которые усиленно изучались в лаборатории электронных систем Массачусетсского технологического института. Там было установлено, что, если не применять какое-либо обучающееся устройство такого типа, программирование машины с жесткой схемой представляет собой очень трудную задачу и что существует настоятельная необходимость в устройствах для программирования этого программирования.
Но понятие обучающихся машин применимо не только к тем машинам, которые мы создаем сами, но и к тем живым машинам, которые мы называем «животными», и это бросает новый свет на биологическую кибернетику. Здесь я хочу выделить среди многих современных исследований книгу супругов Стэнли-Джонсов о кибернетике (отметим орфографию) живых систем[90]. [c.38] В этой книге авторы много места отводят обратным связям, поддерживающим рабочий уровень нервной системы, а также другим обратным связям, отвечающим на частные раздражения. Поскольку соединение уровня системы с частными реакциями является в значительной степени мультипликативным, оно также нелинейно и подчиняется соображениям, подобным изложенным выше.
Эта область исследований сейчас усиленно развивается и, я надеюсь, в ближайшем будущем должна развиваться гораздо больше.
Машины с памятью и самовоспроизводящиеся машины, которые я до сих пор описывал, основаны в большой мере, хотя и не полностью, на устройствах с весьма высокой специализацией, которые можно назвать копировальными устройствами. Физиологические варианты того же процесса должны больше соответствовать особым методам, свойственным живым организмам, где копирование заменяется менее специализированным процессом самоорганизации системы. Гл. Х настоящей