Существуют игры, как, например, в крестики и нулики, где вся стратегия известна и такую политику можно проводить с самого начала. Если это возможно, то это явно наилучший способ игры. Но во многих играх, как шахматы и шашки, наше знание недостаточно для полного осуществления подобной стратегии, и тогда мы можем лишь приблизиться к ней. Приближенная теория в стиле фон Неймана, как правило, учит игрока действовать с крайней осторожностью, исходя из допущения, что его противник — совершенный мастер.
Однако такая установка не всегда оправданна. На войне, являющейся родом игры, она, как правило, будет вести к нерешительным действиям, которые во многих случаях будут немногим лучше поражения. Приведу два исторических примера. Когда Наполеон сражался с австрийцами в Италии, его успех был обусловлен отчасти тем, что ему было известно ограниченное и традиционное военное мышление австрийцев. С полным основанием он мог полагать, что они не способны использовать новые, требующие решительных действий методы войны, введенные солдатами французской революции. Когда затем Нельсон сражался с объединенными флотами континентальной Европы, у него было то преимущество, что он командовал флотом, господствовавшим на морях в течение многих лет и выработавшим методы мышления, недоступные, как ему было хорошо известно, для противников. Если бы адмирал вместо того, чтобы полностью использовать это преимущество, действовал осторожно, исходя из допущения, что противник имеет такой же военно-морской опыт, он возможно, выиграл бы в конце концов войну, но не смог бы одержать столь быструю и решительную победу и установить непроницаемую морскую блокаду, которая в конечном счете привела к падению Наполеона.
Итак, в обоих случаях руководящим принципом была известная репутация командира и его противников, проявившаяся статистически в их прошлых действиях, а не стремление проводить совершенную игру против совершенного противника. Непосредственное применение метода фон Неймана в этих случаях не принесло бы пользы. [c.255]
Подобно этому, учебники шахматной теории написаны не с точки зрения фон Неймана. Они представляют собой собрания принципов, извлеченных из практического опыта шахматистов, игравших против других шахматистов высокой квалификации и больших знаний, и устанавливают определенные стоимости или веса, присваиваемые потере каждой фигуры, подвижности, господству над пространством, развитию сил и другим факторам, изменяющимся в ходе партии.
Не очень трудно сделать машины, которые будут играть в шахматы каким-то образом. Простое соблюдение законов игры, при котором делаются лишь разрешенные ходы, легко осуществимо на весьма простых вычислительных машинах. Для этой цели нетрудно приспособить обычную цифровую машину.
Теперь встает вопрос о политике в рамках правил игры. Всякие оценки фигур, господства, подвижности и т. д. внутренне допускают сведение к количественным выражениям, и, когда это сделано, становится возможным применить принципы шахматного учебника, чтобы на каждой стадии найти лучшие ходы. Такие машины созданы, и они будут играть очень хорошие любительские партии, но пока что не партии на уровне мастера.
Представьте себе, что вы играете в шахматы против такой машины. Чтобы сделать ситуацию справедливой, предположим, что вы играете заочно, не зная, что играете против машин, и, следовательно, без предубеждений. Естественно, как всегда бывает в шахматной игре, вы составите некоторое суждение о шахматной индивидуальности вашего противника. Вы обнаружите, что, когда на доске возникает дважды одно и то же положение, ваш противник будет реагировать каждый раз одинаковым образом, и вы решите, что его поведение весьма негибкое. Если какой-нибудь из ваших приемов достигнет цели, то этот прием всегда будет достигать цели при тех же самых условиях. Поэтому искусному игроку не очень трудно выработать надлежащую линию игры против противника-машины и все время обыгрывать ее.
Однако существуют машины, которые нельзя обыграть так тривиально. Предположим, что машина через каждые несколько игр делает перерыв и использует свои способности для другой цели. На этот раз она не [c.256] играет с противником, но исследует все предшествующие партии, записанные у нее в памяти, чтобы определить, какие веса различных оценок фигур, господства, подвижности и т. п. приводят чаще всего к выигрышу. Таким образом, она учится не только на своих неудачах, но и на успехах противника. После этого она заменяет свои прежние оценки новыми и начинает играть как другая, лучшая машина. Такая машина уже не будет иметь жесткой индивидуальности, и приемы, бывшие прежде успешными против нее, потерпят в конце концов неудачу. Более того, она может стечением времени усвоить нечто из стратегии своих противников.
Все это очень трудно осуществить в шахматах, и на практике метод не был разработан настолько, чтобы создать машину, способную играть в шахматы как мастер. Шашки представляют более легкую задачу. Равноценность фигур значительно уменьшает число рассматриваемых комбинаций. Кроме того, отчасти вследствие этой однородности, шашечная игра гораздо легче делится на отдельные стадии, нежели шахматная. Даже в шашках главная задача эндшпиля уже не в том, чтобы брать фигуры, а в том, чтобы входить в контакт с противником, добиваясь позиций, позволяющих брать фигуры. Оценка ходов в шахматной партии должна делаться независимо на различных стадиях. Не только эндшпиль отличается от миттельшпиля в важнейших отношениях, но и в дебютах выдвижение фигур в положение, обеспечивающее свободу движений для нападения и защиты, имеет гораздо большее значение, чем в миттельшпиле. Поэтому мы даже приближенно не можем удовольствоваться равномерной оценкой различных весовых факторов для игры в целом, но должны разбить процесс обучения на ряд отдельных стадий. Только тогда можно надеяться на создание обучающейся машины, которая сумеет играть в шахматы как мастер.
В этой книге уже упоминалась, в связи с задачей предсказания, идея сочетать программирование первого порядка, которое может быть в ряде случаев линейным, с программированием второго порядка, в котором для выбора стратегии, применяемой при программировании первого порядка, используется гораздо больший отрезок прошлого. Предсказывающее устройство использует [c.257] ближайшее прошлое полета самолета для предсказания будущего при помощи линейной операции; но отыскание правильной линейной операции есть статистическая задача, в которой долгое прошлое этого полета и прошлое многих подобных полетов используются для получения статистической основы.
Статистические исследования, необходимые для того, чтобы почерпать из долгого прошлого стратегию, предназначенную для короткого прошлого, являются в высшей мере нелинейными. Так, при использовании для предсказания уравнения Винера — Гопфа[181] коэффициенты уравнения разыскиваются нелинейным методом. В общем случае обучающаяся машина действует при помощи нелинейной обратной связи. Шашечная машина, описанная Сэмьюэлом[182] и Ватанабе[183], может выучиться обыгрывать своего программиста вполне закономерным образом после 10—20 рабочих часов программирования.
Философские идеи Ватанабе о применении программирующих машин чрезвычайно интересны. С одной стороны, метод доказательства элементарной геометрической теоремы, оптимальным образом отвечающий определенным критериям изящества и простоты, рассматривается Ватанабе как обучение игре, но не против индивидуального противника, а против, так сказать, «полковника Боуги»[184]. Другая игра, исследуемая Ватанабе, ведется при логической индукции, когда, желая построить теорию, оптимальную в таком же квазиэстетическом смысле, исходя из оценки экономичности, прямоты и т. п., мы определяем значения конечного числа параметров, оставленных свободными. Несмотря на ограниченность такой логической индуктивной игры, она вполне заслуживает изучения. [c.258]
Теория играющих машин проливает свет на многие виды борьбы, которые мы обычно не считаем играми. Любопытный пример — борьба мангусты со змеей. Как отмечает Киплинг в «Рикки- Тикки-Тави», мангуста не является невосприимчивой к яду кобры, хотя она до некоторой степени защищена своей жесткой шкурой, которую змее трудно прокусить. По описанию Киплинга, эта борьба — настоящая игра со смертью, состязание в мускульной ловкости и проворстве. Нет основания считать, что у мангусты движения быстрее или точнее, чем у кобры. Тем не менее мангуста почти всегда убивает кобру и выходит из борьбы без единой царапины. Как же ей это удается?
Я даю здесь объяснение, которое мне кажется верным и которое я составил, когда посмотрел такое сражение, а также кинофильм о других подобных сражениях. Я не гарантирую правильности ни своих