в уравнении (5.14) использовать данные из столбца «Результат», тогда переменная S равна 100. В этом случае мы
100 /1,9=52,63.
Если вычесть значение Y в выражении Z(T, U - Y), являющемся элементом уравнения (5.14), мы получим математическое ожидание по базовому инструменту, равное его текущему значению, и поэтому f не будет оптимальным. Тем не менее нам следует вычесть значение Y в Z(T, U - Y) для того, чтобы соответствовать расчетам цен опционов, а также формуле «пут-колл» паритета. Если мы будем использовать уравнение (3.30) вместо уравнения (5.14), тогда из каждого значения U в (5.21а) и (5.216) следует вычесть значение Y, то есть надо вычесть Y из каждого P&L, что опять же создает ситуацию, когда нет положительного математического ожидания, и поэтому нет оптимального значения f. Все вышесказанное означает, что если мы откроем позицию по базовому инструменту, не имея никаких представлений о направлении движения его цены, то не получим положительного математического ожидания (как происходит с некоторыми опционами) и поэтому не найдем оптимального f. Мы можем получить оптимальное f только в том случае, когда математическое ожидание положительное. Это произойдет, если базовый инструмент «в тренде».
Теперь у нас есть методология, позволяющая определить оптимальное f (и его побочные продукты) для опционов и базового инструмента (разными способами). Отметьте, что используемые в этой главе методы определения оптимальных f и побочных продуктов для опционов или базового инструмента не требуют обязательного применения механической системы. Вспомним, что эмпирический метод поиска оптимального f основан на эмпирическом потоке P&L, созданном механической системой. Из главы 3 мы узнали о параметрическом методе поиска оптимального f на основе данных, которые имеют нормальное распределение. Тот же метод можно использовать для поиска оптимального f при любом распределении данных, если существует функция распределения. Из главы 4 мы познакомились с параметрическим методом поиска оптимального f для распределений торговых P&L, которые не имеют функций распределения (для механической или немеханической системы) и с методом планирования сценария.
В этой главе мы изучили метод поиска оптимального f для немеханических систем. Обратите внимание, все расчеты допускают, что вы в некоторый момент времени «слепо» открываете позицию, причем направленного движения цены базового инструмента не ожидается. Таким образом, предложенный метод лишен какого-либо прогноза относительно цены базового инструмента. Мы увидели, что можно учесть ценовой прогноз, изменяя каждый день значение базового инструмента в уравнениях 5.17а и 5.176. Даже слабый тренд значительно меняет функцию ожидания. Оптимальная дата выхода может
Проиллюстрируем вышесказанное на следующем примере. Пусть цена исполнения колл-опциона равна 100 и он истекает 911120, цена базового инструмента равна также 100. Волатильность составляет 20%, а сегодняшняя дата 911104. Мы будем использовать формулу товарных опционов Блэка (Н находим из уравнения (5.07), R = 5%) и 260,8875-дневный год. Для 8 стандартных отклонений рассчитаем оптимальные f (чтобы соответствовать прошлым таблицам, которые не учитывают тренд по базовому инструменту), и используем минимальное приращение тика 0,1. В данном случае мы будем учитывать тренд, при котором цена базового инструмента растет на 0,01 пункта (одну десятую тика) в день:
Дата выхода | AHPR | GHPR | f |
Вторник 911105 | 1,000744 | 1,000357 | 0,1081663 |
Среда 911106 | 1,000149 | 1,000077 | 0,0377557 |
Четверг 911107 | 1,000003 | 1,000003 | 0,0040674 |
Пятница 911108 | <1 | <1 | 0 |
Отметьте, как небольшой тренд (0,01 пункта в день) меняет результаты. Наша оптимальная дата выхода остается 911105, но оптимальное f= 0,1081663, что соответствует 1 контракту на каждые 2645 долларов на балансе счета (2,861* * 100 / 0,1081663). Кроме того, для этого опциона ожидание положительно все время до 911107. Если тренд будет сильнее, результаты изменятся еще больше. Последнее, что необходимо учесть, — это размер комиссионных. Цена опциона из уравнения (5.14) (значение переменной Z(T, U - Y)) должна быть уменьшена на размер комиссионных (если с вас берут комиссионные и при открытии позиции, то вы должны увеличить значение переменной S из уравнения (5.14) на размер комиссионных).
Мы рассмотрели поиск оптимального f и его побочных продуктов, когда механическая система не используется. Теперь перейдем к изучению одновременной торговли по нескольким позициям.
Торговля по нескольким позициям при наличии причинной связи
Прежде чем начать обсуждение одновременной торговли по нескольким позициям, необходимо пояснить разницу между причинными связями и корреляционными связями. В случае с причинной связью существует фактическое, связующее объяснение корреляции между двумя или более событиями, т. е. причинная связь — это такое отношение, где есть корреляция, и ее можно объяснить логически. Обычная корреляционная связь подразумевает, что есть зависимость, но этому нет причинного объяснения. В качестве примера причинной связи давайте рассмотрим пут-опционы и колл-опционы на акции IBM.