871001 Длинная 320,67 -7,2 33,72 0,1848783
871012 Короткая 302,81 -17,86 15,86 0,2076074
871221 Длинная 242,94 59,87 75,73 0,3492674

Если определять оптимальное f no этому потоку сделок, мы найдем, что соот­ветствующее среднее геометрическое (фактор роста на нашем счете за игру) равно 1,12445.

Теперь мы возьмем те же сделки, только будем использовать модель оценки фондовых опционов Блэка-Шоулса (подробно об этом будет рассказано в главе 5), и преобразуем входные цены в теоретические цены опционов. Входные данные для ценовой модели будут следующими: историческая волатильность, рассчитанная на основе 20 дней (расчет исторической волатильности также приводится в главе 5), безрисковая ставка 6% и 260,8875 дней (это среднее число ра­бочих дней в году). Далее мы допустим, что покупаем опционы, когда остается ровно 0,5 года до даты их исполнения (6 месяцев), и что они «при деньгах». Дру­гими словами, существуют цены исполнения, в точности соответствующие цене входа на рынок. Покупка колл-опциона, когда система в длинной позиции по ба­зовому инструменту, и пут-опциона, когда система в короткой позиции по базо­вому инструменту, с учетом параметров упомянутой модели оценки опционов, даст в результате следующий поток сделок:

Дата Позиция Вход P&L Полный капитал Базовый инструмент Действие
870106 Длинная 9,623 0 0 241,07 Длинный колл
870414 Фиксация 35,47 25,846 25,846 276,54
870414 Длинная 15,428 0 25,846 276,54 Длинный пут
870507 Фиксация 8,792 -6,637 19,21 292,28
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату