Результат предельно прост:

X2n = па2.

Он означает, что если величину смещения X каждого из атомов после п скачков на одинаковое расстояние а возвести в квадрат, а затем вычислить среднюю величину этих квадратов X2n, то окажется, что она пропорциональна числу скачков.

Слово «скачок» появилось потому, что от такси мы уже перешли к атомам. Так как время ожидания очередного скачка ? (или время «оседлой жизни») в среднем постоянно и за время t атом совершит п = t/? скачков, приведенное уравнение можно переписать в другом виде:

   

Если теперь опять от атомов перейти к такси, то полученный результат означает, что среднее расстояние между многими такси и таксомоторным парком, из которого они вышли одновременно, со временем изменяется по закону ? t1/2 . Последнюю формулу удобно переписать в другом виде:

X2n=Dt< /p>

Величина D = а2/? называется коэффициентом самодиффузии.

При строгом расчете, когда учитываются все шесть возможных перемещений атома (вперед и назад вдоль каждого из трех направлений в пространстве), оказывается, что D = а2/6?.

А теперь модельный эксперимент «блуждающие точки». Заставьте хаотически блуждать 10 точек, потребовав, чтобы каждая из них двигалась вдоль прямой: когда брошенная монета падает «орлом» — шаг вправо (например, сантиметровый), «решеткой» — такой же шаг влево. После того как все точки сделают одинаковое число шагов, надо величину смещения (в сантиметрах) каждой из них возвести в квадрат, эти квадраты просуммировать и разделить на число точек, т. е. на 10. Так будет найдена величина X2n. Затем такой подсчет надо повторить при нескольких других значениях числа шагов, вплоть до п = 100. Построив график зависимости X2n от п, мы убедимся, что, как это и предсказывает формула, которую мы записали, поверив в ее справедливость, X2n линейно увеличивается с ростом п. Такой эксперимент мы сделали, и его результаты изобразили на рисунках. Ушло на это два часа, трудились вдвоем, я бросал монету, товарищ вел записи, затем мы построили график зависимости X2n от п.

Хотелось бы в координатах X2n и п получить прямую, согласно формуле именно прямая и должна быть. На нашем графике точки, не ложась точно на прямую, рассыпаны вблизи нее. Это естественно, так как слишком мало точек и шагов, слишком мала статистика для того, чтобы вероятностные законы обрели точность. Однако и в нашем опыте (всего 10 точек, каждая по 100 шагов) закон X2n ~ п себя проявил.

Итак, оказывается хаос — не хаос! В нем скрыты строгие закономерности, которые себя отчетливо проявляют в процессе хаотических блужданий атомов в кристалле — тем отчетливее, чем больше атомов и чем большее число неупорядоченных скачков совершает каждый из них.

Нам, вглядывающимся в непременные признаки жизни кристалла, конечно же, следует познакомиться с количественными характеристиками того процесса, который мы называем «обычная классическая самодиффузия» или «бесцельное блуждание атомов в кристалле». Будем говорить главным образом о вакансиях, твердо помня при этом, как взаимообусловлены перемещения вакансий и атомов.

Совокупность вакансий в кристалле может быть уподоблена идеальному газу. Аналогия между газом реальных молекул или атомов и газом «атомов пустоты» имеет вполне разумные основания. Подобно молекулам идеального газа, вакансии в кристаллической решетке находятся друг от друга на значительных расстояниях и поэтому практически между собой не взаимодействуют. Иногда они сталкиваются, после чего уходят в разные стороны.

Для того чтобы пользоваться этой аналогией, следует убедиться, что, подобно идеальному газу, газ вакансий разрежен. Это основное условие, которому должен удовлетворять идеальный газ. Оценим среднее расстояние между вакансиями l? . Если в единице объема находится п? вакансий, то

т. е. вакансии в среднем удалены друг от друга на двадцать межатомных расстояний. Приблизительно на таком же расстоянии друг от друга находятся молекулы в воздухе при атмосферном давлении. С понижением температуры концентрация вакансий с? быстро уменьшается, среднее расстояние между ними l? увеличивается, газ вакансий становится еще более разреженным, а это означает, что основное условие идеальности оказывается выполненным.

Итак, совокупность вакансий — разреженный газ. Однако частицы этого газа движутся не в свободном пространстве, а в кристаллической решетке, и это определяет характер их движения. Между двумя столкновениями они движутся не по прямой, а по очень запутанной ломаной линии, состоящей из прямолинейных отрезков — они определяются расстояниями между соседними позициями в кристаллической решетке, которые зависят от ее структуры.

Обсудим характеристики газа вакансий в каком-нибудь определенном кристалле, например в золоте, имеющем следующие характеристики: решетка кубическая, расстояние между двумя позициями, где могут находиться атомы, а ? 3 • 10-8 см, температура плавления 1336 К. Период тепловых колебаний атома в узле решетки ?0 ? 10-13 с. Допустим, что температура кристалла Т = 1330 К, т. е. на 6 К ниже точки плавления, и проследим при этой температуре судьбу вакансии. Ее состояние характеризуется следующими цифрами:

 

Вы читаете Живой кристалл
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату