О «восхождении» дислокаций теперь пишут в серьезных научных книгах. Видимо, тому ученому, который впервые исследовал перемещение дислокаций с одной плоскости скольжения на другую плоскость, движение дислокации представилось подобным восхождению по ступеням лестницы. Именно этот образ и помог ему понять закономерности «восхождения».

Дислокация умеет перемещаться двумя различными механизмами — «скользить» в плоскости скольжения и «восходить» в направлении, перпендикулярном этой плоскости. Одновременно «скользя» и «восходя», дислокация может двигаться и под произвольным углом к плоскости скольжения. Со скольжением мы знакомы: знаем и о гусенице, и о ковре, и о реальной скользящей дислокации. В этом очерке — о восхождении.

Что происходит, когда краевая дислокация перемещается с данной плоскости скольжения на параллельную? Происходит вот что: незавершенная плоскость, ограниченная дислокационной линией, становится короче на величину расстояния между плоскостями. Произойти это может лишь в случае, если освобождающиеся при этом атомы диффузионно уйдут от дислокационной линии в кристалл. Поэтому для того, чтобы дислокация «восходила», нужно создать условия, при которых атомы будут диффузионно течь по направлению от линии. Впрочем, они могут течь и к линии и пристраиваться к незавершенной плоскости, удлиняя ее. В этом случае дислокация будет восходить в противоположном направлении, скажем так: нисходить.

Итак, дело за малым, надо обеспечить направленный диффузионный поток атомов. Этого можно добиться, прилагая к кристаллу сжимающие или растягивающие напряжения. Если кристалл сжать в направлении, перпендикулярном незавершенной плоскости, — вблизи дислокационной линии, т. е. там, где обрывается незавершенная плоскость, величина напряжений окажется большей, чем вдали от нее. Это означает, что вблизи дислокационной линии концентрация вакансий будет более низкой, чем вдали от нее, и, следовательно, к линии потекут вакансии или, что то же, атомы диффузионно потекут от линии и плоскость будет укорачиваться. В случае растягивающих напряжений все рассуждения обратятся: от линии потекут вакансии, к линии — атомы, плоскость удлиняется. В предыдущих рассуждениях, специально этого не оговорив, мы воспользовались зависимостью концентрации вакансий с? от напряжений ?: создаем сжимающие напряжения — концентрация вакансий понижается, растягивающие — увеличивается. Установить количественную связь между с? и величиной и знаком ? — дело не простое, не станем им заниматься. А вот качественно понять, в чем здесь дело, не сложно. Дело в том, что всесторонне сжимаемый кристалл обязан как-то уплотниться, и он это делает, лишаясь части пустоты в виде пустых узлов решетки — вакансий. А растягиваемый кристалл ведет себя диаметрально противоположно: подчиняясь растягивающим напряжениям, которые его вынуждают к увеличению объема, кристалл рождает пустоту в виде дополнительных вакансий. Интуиция подсказывает, что величина изменения концентрации вакансий и величина напряжений должны быть связаны зависимостью ?с? ~ ?. Скажем, зависимость ?с? ~ ?2 не может иметь места, так как она означала бы нелепость: ?с? не зависит от знака ?. Точный расчет подтверждает: зависимость ?с? ~ ?.

Примитивно процесс диффузионного восхождения дислокации можно проиллюстрировать моделью: колодой скользких карт, одна из которых из колоды частично выдвинута. Если такую колоду сжать, выдвинутая карта выскользнет из нее, а если растянуть, карта упадет в колоду.

Не пытаясь строить теорию восхождения дислокаций, а пользуясь только «общими соображениями», можно полагать, что скорость восхождения определяется величиной диффузионного потока атомов к дислокационной линии или от нее. Это означает, что при неизменном напряжении с ростом температуры скорость восхождения будет увеличиваться так же, как и коэффициент диффузии. И расчеты, и опыты согласно свидетельствуют о том, что при температуре, близкой к температуре плавления металлов, дислокация может восходить со скоростью ?10- 4 см/с. Это — большая величина! Она означает, что за секунду дислокация пройдет путь ?10- 4 см и пересечет ? 10- 4 / 3.10-8 ? 3.103 атомных плоскостей.

За секунду! Именно поэтому восхождение дислокаций проявляется во многих реальных явлениях и процессах, которые происходят при высоких температурах. Расскажу о двух из них.

 

Один из процессов заключается в обходе препятствий, которые скользящая дислокация может встретить на своем пути. Представим себе, что к кристаллу извне приложено напряжение, вызывающее в нем скольжение краевых дислокаций вдоль какой-то из плоскостей скольжения. В этой плоскости одна за другой движутся дислокации. В бездефектном кристалле ансамбль скользящих дислокаций напоминает цепочку движущихся друг за другом людей. Именно так по узкой тропинке движутся туристы. Пусть на пути движущихся дислокаций встретится непреодолимый для них барьер. Не важно, что собой представляет этот барьер-стопор, а важно лишь, что для скользящей дислокации он непреодолим. У такого стопора головная дислокация остановится. Скользящие за головной тоже будут тормозиться и поджимать ее к стопору. Дело в том, что две одинаковые дислокации, если они находятся в одной плоскости, друг от друга отталкиваются. Таков закон! Подробно о нем будет рассказано позже, в очерке «Взаимодействие и взаимопревращение дефектов». Этот закон означает, что, приближаясь к себе подобной, движущаяся дислокация будет тормозиться. Испытывая сжимающие напряжения, поджатая к стопору, дислокация начнет диффузионно восходить и перейдет на плоскость, которая расположена над (или под) стопором. На этой плоскости она сможет беспрепятственно продолжать скользить, а кристалл — деформироваться. В этом процессе благодаря восхождению дислокация обходит, огибает стопор, который, скользя, она не могла бы преодолеть. Продолжая аналогию между дислокациями и туристами, уместно вспомнить строку из шуточной песни туристов: «Умный в гору не пойдет, умный гору обойдет!»

Здесь надо упомянуть, что описанный процесс обхода препятствия дислокацией может совершаться при высокой температуре, когда диффузия происходит достаточно быстро. В области низких температур события могут развернуться совсем по-иному... Впрочем, об этом позже, в очерке, посвященном зарождению трещин.

Второй процесс. Он интересен тем, что восхождение дислокаций в нем проявляется в чистом виде, без примеси скольжения. Речь идет о процессе самопроизвольного разгибания некогда согнутого кристалла. Легко представить себе, что к изгибу кристалла приводят незавершенные плоскости, вставленные в кристалл с одной его стороны. Модель: колода карт, в которой некоторое количество карт вставлено не на всю длину колоды. Каждая незавершенная плоскость соответствует одной краевой дислокации. Очевидно, радиус кривизны кристаллической пластинки будет тем меньшим, чем большее число краевых дислокаций одного знака в нем расположено. В процессе отжига эти дислокации расположатся в ряды: это оказывается энергетически выгодным. При этом, однако, число дислокаций останется неизменным, а значит, неизменным останется и кривизна кристалла. Каждый ряд дислокаций подобен сжатой пружине, так как расположенные друг над другом дислокации отталкиваются, — таков закон их взаимодействия. Поэтому дислокации, расположенные над и под средней линией изогнутого кристалла, должны перемещаться к его противоположным поверхностям.

При этом первые (незавершенные плоскости укорачиваются!) становятся «источником» атомов, а вторые (незавершенные плоскости удлиняются!) — «источником» вакансий. Обмениваясь атомами и вакансиями, дислокации диффузионно восходят, через поверхность кристалла выходят за его пределы, их число в кристалле уменьшается, и он разгибается.

Этот эффект наблюдался в очень простых опытах. Тонкая пластинка монокристалла NaСl изгибалась по кругу так, что между ее концами оставался маленький зазор. Затем она горизонтально располагалась в печи. В процессе отжига велось наблюдение за шириной зазора. Со временем он увеличивался,

Вы читаете Живой кристалл
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату