.

Опыт свидетельствует о том, что в реальных кристаллических телах величина lmax оказывается небольшой, приблизительно равной 10-3—10-2 см; пройдя такой путь, дислокации «выходят из игры» по разным причинам: либо достигают границы зерна, либо выходят за пределы образца, либо, встретив стопор, теряют подвижность, а следовательно, и способность вносить вклад в формирование кристалла. При ?0 ? 107 см-2 и b ? 3• 10-8 см оказывается, что ?max = 10-4 - 10-3. А в действительности, благодаря движению дислокаций, кристалл может деформироваться в несравненно большей степени. Это и означает, что в процессе деформирования в нем, видимо, должны рождаться новые подвижные дислокации.

Когда речь идет о размножении живых организмов, имеется в виду увеличение числа особей. В случае дислокаций имеется в виду нечто иное, а именно увеличение их плотности. А так как плотность дислокаций ?0 = ?/V , где ? — суммарная протяженность дислокационных линий в объеме V, то под размножением следует понимать увеличение ?. Итак, оказывается, что размножение дислокации есть попросту ее удлинение.

Вот теперь можно поговорить о конкретном механизме размножения. Об одном из многих. В литературе он называется механизмом Франка — Рида.

Практически все необходимое для того, чтобы понять этот механизм, уже было рассказано в очерке о «росе», тормозящей движение дислокаций. После того, как участок дислокационной линии, заторможенный двумя неподвижными «росинками»-стопорами, напряжением ? > ? max будет «продавлен» сквозь стопоры, в плоскости скольжения он превратится в замкнутый круг и в участок дислокационной линии между стопорами. Этот участок так же может превращаться в круг, повторив предыдущий цикл. Он окажется очагом размножения дислокационной линии, так как ее суммарная длина в этом процессе возрастает. Разумеется, до тех пор, пока действует напряжение, способное «продавить» заторможенный участок дислокационной линии сквозь стопоры. Рисунок это отчетливо иллюстрирует.

В кристалле могут быть и одиночные замкнутые петли, и полупетли, которые обоими концами выходят на поверхность кристалла. Их расширение или сжатие также приводит к размножению или гибели дислокаций.

Коротко о механизмах «гибели» дислокаций. Один из механизмов может быть обратным тому, который приводил к размножению. Действительно, если перестать дуть в трубку, на торце которой расположен мыльный пузырь, он через трубку выдавит из себя газ и «схлопнется». Подобно этому «схлопнется» и замкнутая дислокационная линия («петля»), если внешние напряжения перестанут ее растягивать. То же относится и к «полу-петле», которая не замкнута на себе, а выходит на поверхность кристалла.

Описанным механизмом дислокационная линия гибнет медленно, обреченно. Есть, однако, и иные механизмы, при которых длина дислокационных линий сокращается скачком. Так произойдет, если в одной плоскости скольжения навстречу друг другу движутся две линии, каждая из которых ограничивает недостроенную плоскость над и под плоскостью скольжения. При встрече линий эти полуплоскости, дополнив друг друга, достроются, и из двух полуплоскостей образуется одна здоровая плоскость. Были две дислокационные линии и исчезли! И, наконец, совсем простой и очевидный механизм: движущиеся в кристалле дислокационные линии могут выйти на его поверхность и, таким образом, перестать существовать в объеме!

В этом очерке слова «размножение» и «гибель» я употреблял в прямом, не искаженном смысле: «размножение» — значит увеличилась мера, «гибель» — значит было и исчезло!

ЗВУЧАНИЕ КРИСТАЛЛА

Летом 1924 г. академик Абрам Федорович Иоффе получил письмо из Лейдена от своего друга — выдающегося физика-теоретика Пауля Эренфеста. В этом письме сообщалось, что Пауль Эренфест собирается приехать к Иоффе в гости где-то в августе — сентябре. В конце письма — совсем неожиданная просьба: рафинированный физик-теоретик, тончайший ценитель формальной строгости теоретических построений новой физики просит организовать ему возможность принять участие в не очень сложной экспериментальной работе. Что-нибудь с кристаллами.

Я не могу толково объяснить читателю, чем эта просьба была вызвана. Быть может, обычная «охота к перемене мест», желание увидеть любимую науку с иной позиции, быть может, попытка поиска иного поприща: Эренфест был болезненно самокритичен и очень скептически относился к своим достижениям в теоретической физике. Так или иначе, но в августе — сентябре 1924 г. Иоффе и Эренфест «в четыре руки» занимались исследованиями пластического деформирования монокристаллов цинка. Они заметили, что деформирование монокристаллов осуществляется скачкообразно и что скачки сопровождаются потрескиванием. Выражаясь научно, скажем так: пластическое деформирование сопровождается акустической эмиссией.

Где-то я встречал разумную мысль о том, что это очень интересное явление следовало бы именовать «эффект Иоффе — Эренфеста». В Ленинградском физико-техническом институте он очень подробно исследовался ученицей А. Ф. Иоффе Мариной Викторовной Классен-Неклюдовой, ныне известным профессором-кристаллофизиком.

Собственно, и до Иоффе и Эренфеста звучание кристалла слышали неоднократно. Все паяльщики и лудильщики издавна знают, что при деформировании третник (сплав: 1 часть свинца и 2 части олова) потрескивает. Но в данном случае, как и в несметном количестве подобных, важно не то, что кто-то видел физическое явление, а то, что кто-то иной обратил на него внимание, понял его важность, а это и значит — сделал открытие.

Итак, при деформировании кристалл может звучать. Возникает большое количество совсем не риторических вопросов. Почему возникает звук? Почему он подобен не гулу сирены, а тиканью часов. В Ленинградском физико-техническом институте об образцах Иоффе и Эренфеста говорили: цинковые часы. И еще: нельзя ли повлиять на это звучание? Нельзя ли его использовать, дать ему выход в практику?

Будем разбираться в сформулированных вопросах, так сказать, в порядке их поступления.

Начнем с сотворения модели явления, с поисков аналогий, которые могли бы помочь ответить на интересующие нас вопросы. Вспомним, что пластическая деформация сопровождается движением дислокаций. Естественно предположить, что звучание кристалла и движение в нем дислокаций — явления не независимые. Тем более, что сразу же напрашивается аналогия: движение пули в воздухе сопровождается «акустической эмиссией», или, попросту говоря, свистом. С пулей и воздухом все ясно: в пуле, имеющей массу m и летящей со скоростью ?, запасена кинетическая энергия, та самая, которая, как известно, равна m?2/2. Постепенно теряя эту энергию на преодоление сопротивления воздуха, пуля возбуждает в нем упругие волны, которые нашим ухом воспринимаются, как свист. Для того чтобы задуманная нами аналогия оказалась состоятельной, нам нужно подобно массе пули представить себе массу дислокации — величину

Вы читаете Живой кристалл
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату