значительно меньшем того, которое следует из теории.

Иоффе предположил, что на поверхности кристалла имеются микроскопические трещины. При нагрузках, меньших соответствующей «теоретической» прочности в устье трещины, в маленьком объеме кристалла могут возникнуть напряжения, при которых связи начнут рваться. А это значит, что трещина будет распространяться в глубь образца, пронижет его и расчленит на две части. Кристалл разрушится не потому, что в плоскости разрыва одновременно разрушились все связи, а потому, что последовательно разрушающиеся связи дали возможность трещине вырасти и расчленить кристалл.

В то время, когда Иоффе осмысливал свои опыты, идея «трещины» носилась в воздухе. И не случайно почти одновременно была использована и Гриффитсом, и Иоффе.

То, о чем думал Иоффе, представляя механизм разрушения, можно отчетливо проиллюстрировать модельным опытом. Он прост, и его результаты не оставляют сомнений. На предметном столике микроскопа растягивается тонкая пластинка плексигласа, на боковом торце которой сделан острый и неглубокий надрез. Пластинка моделирует кристалл, надрез — трещину на его поверхности. В поляризованном свете можно отличить напряженные участки в плексигласе: чем больше напряжение, тем соответствующий участок темнее. Так вот, на последовательности кадров отснятого нами кинофильма видно, что в устье надреза напряжения максимальны и что пластинка разрушается вследствие движения напряженного устья надреза сквозь нее. Происходит это при напряжениях, значительно меньших тех, которые необходимы для разрушения пластинки без надреза.

В упрощенном варианте подобный модельный опыт можно сделать не прибегая ни к микроскопу, ни к поляризованному свету, ни к кинокамере: порвать полоску бумаги, растягивая ее, намного легче, если предварительно сделать на ней маленький надрыв.

Итак, гипотеза есть, нужен опыт, экзаменующий ее. Идею опыта подсказывает прямолинейная логика: если действительно поверхностные трещины — истинная причина почти пятисоткратного понижения прочности, то, растворив в воде тонкий слой кристалла, в котором есть трещины, мы вправе ожидать, что прочность кристалла возрастет в пятьсот раз. Логика это право дает, а скепсис возражает логике: неужели вода способна обусловить такой эффект?

Иоффе поставил следующий опыт. Он растягивал монокристальный образец каменной соли в условиях, когда часть образца была в воздухе, а часть омывалась теплой водой, которая растворяла и утоняла кристалл. Результат опыта оказался в согласии с предсказаниями логики: образец разрушился в сухой части, обнаружив прочность ? 45• 10е дин/см2. Мокрая, более тонкая часть образца выдерживала напряжения до величины 15• 109 дин/см2, которая не так уж далека от «теоретической прочности» 20 • 109 дин/см2.

Ситуация гриффитсовская: где тонко, там не рвется! Как правило, красивым нам кажется такой опыт, который побеждает наш скепсис. В этом смысле опыт Иоффе, безусловно, очень красив!

Опыт (он был осуществлен в 1924 г.) с таким впечатляющим результатом, естественно, привлек к себе внимание и специалистов, и «околонаучных кругов». Газеты и научно-популярные журналы наперебой рассказывали своим читателям о фантастических последствиях возможного увеличения прочности материалов: мосты из проволок, сверхлегкие самолеты, автомобили, пароходы. В книге «Моя жизнь и работа» А. Ф. Иоффе возмущается этой рекламой: «...между наблюдением исключительной прочности кристалла каменной соли и получением такой же прочности технических материалов — громадный путь».

Журналисты ликовали по поводу эффекта, а в научных журналах появились статьи и на научных конференциях — выступления, которые, не ставя под сомнение результат опытов по разрыву мокрых кристаллов, опровергали предлагавшееся Иоффе толкование причины такого влияния воды на прочность каменной соли. Австрийский кристаллофизик Смекаль, известный своими исследованиями структуры кристаллов, на конференции в Лондоне утверждал, что в опытах Иоффе прочность соли меняется в связи с тем, что вода частично растворяется в ней. С этим утверждением можно было спорить, прибегая не к общим соображениям, а лишь к результатам точно поставленных опытов.

Такие опыты и были поставлены в Ленинграде, в лаборатории Иоффе. Расскажу о двух из них. Один заключался в простом повторении опыта по разрыву образца, погруженного в воду. Была предусмотрена лишь одна деталь: часть поверхности, погруженной в воду, была от воды защищена полоской нерастворимого лака. В этом случае эффект исчезал, прочность кристалла не повышалась. Через незащищенную поверхность вода в кристалл могла поступать, согласно идее Смекаля, и упрочнять его, но то обстоятельство, что на небольшом участке поверхности сохранились поверхностные трещины, делало кристалл уязвимым, малые нагрузки его разрушали. Идея Смекаля явно оказывалась несостоятельной.

Второй опыт был неожиданным по замыслу. Монокристальный шарик каменной соли предварительно охлаждался в жидком воздухе, а затем перебрасывался в расплавленное олово или свинец. Внешние слои шарика быстро нагревались, расширялись и растягивали во всех направлениях внутреннюю, еще не прогревшуюся часть шарика. Теоретики подсчитали, что в центре шарика возникали напряжения до 7• 109 дин/см2, между тем шарик не разрывался. Дело в том, что напряжения возникали внутри шарика, а поверхностные трещины оставались недостаточно напряженными, не росли, и кристалл сохранял целостность.

У читателя, конечно же, возник вопрос: почему именно трещины на поверхности кристалла оказались определяющими его прочность? Неужели структура объема образца абсолютно бездефектна, свободна от «объемных» трещин, которые были бы равно безразличны и к наличию, и к отсутствию воды на поверхности образца? Действительно, могло бы оказаться, что роль поверхностных трещин не определяла бы прочность. Могло бы, а вот в случае соли не оказалось.

Быть может, это обстоятельство умаляет значимость и общность эффекта? Быть может, речь идет о случайной находке экспериментатора, имеющей ограниченный, частный интерес? Конечно же, нет! Речь идет о другом. Благодаря тому, что отыскались объекты, где поверхностные трещинки себя проявляют предельно отчетливо, физика обогатилась ясным пониманием возможного влияния поверхностных дефектов на механические свойства кристаллов. Важная проблема «кристалл и среда» немного прояснилась, кусочек истинной правды о законах природы оказался заключенным в «эффекте Иоффе».

Абрам Федорович Иоффе был счастливым ученым, он видел при жизни учебники физики с параграфом «Эффект Иоффе» и видел карточки тех цеховых технологических процессов, в которых достигается значительное упрочнение изделий вследствие удаления трещин с их поверхности.

ЭФФЕКТ РЕБИНДЕРА

Продолжим рассказ о живущих в кристалле трещинах. Первый обстоятельный доклад о своем открытии Петр Александрович Ребиндер сделал поздним летом 1928 г. на пароходе, спускавшемся вниз по Волге — от Нижнего Новгорода до Саратова. На пароходе плыли делегаты

VI Всероссийского съезда физиков и гости съезда. Среди гостей были крупнейшие физики того времени: Макс Борн, Петер Дебай, Чарлз Дарвин, Поль Дирак и многие другие. Для истории советской физики это был знаменательный съезд, потому что именно во время этого съезда были доложены и обсуждены три крупнейших достижения молодой советской физики: эффект комбинационного рассения света (о нем доложил Л. И. Мандельштам), первые результаты, полученные при исследовании цепных реакций (о них доложил Н. Н. Семенов), и эффект адсорбционного понижения прочности (о нем доложил П. А. Ребиндер).

Доклад П. А. Ребиндера вызвал скептическое к себе отношение. Докладчик утверждал, что механические свойства кристаллического тела могут быть существенно изменены, если на его поверхности расположить специально подобранные вещества. Докладчик рассказывал об опытах, подтверждающих его

Вы читаете Живой кристалл
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату