распространение остролокализованной волновой функции массивного объекта по траектории, которую задают уравнения Ньютона, можно представлять себе, что волновая функция описывает движение центра масс данного объекта.
93
Из этого описания вы можете сделать вывод, что существует бесконечно много местоположений, где может находиться электрон: для заполнения плавно меняющегося волнового профиля квантовой волны понадобится бесконечное число пикообразных форм, каждая из которых ассоциирована с возможным положением электрона. Как это стыкуется с главой 2, в которой мы обсуждали конечное число различных конфигураций частиц? Во избежание постоянных оговорок, не имеющих важного значения для основного изложения этой книги, я не стал заострять внимание на факте (указанном в главе 2), что для всё более точного определения положения электрона измерительный прибор будет тратить всё больше энергии. Поскольку в реальных ситуациях энергия ограничена, то разрешение прибора не идеально. Для пикообразных квантовых волн это означает, что при любой конечной энергии у пиков имеется отличная от нуля ширина. В свою очередь это означает, что в любой ограниченной области (например, внутри космического горизонта) существует конечное число различных измеряемых положений электрона. Более того, чем тоньше пик (более точное разрешение положения частицы), тем шире квантовая волна, описывающая энергию частиц, что демонстрирует обусловленный принципом неопределённости компромисс между характеристиками частицы.
94
Для читателя с философским складом ума замечу, что описанная выше двухъярусная картина научного объяснения была предметом философских обсуждений и споров. Смежные идеи и обсуждения можно найти в работах: Frederick Suppe, «The Semantic Conception of Theories and Scientific Realism». Chicago: University of Illinois Press, 1989; James Ladyman, Don Ross, David Spurrett, & John Collier, «Every Thing Must Go». Oxford: Oxford University Press, 2007.
95
Физики часто довольно свободно говорят о бесконечном количестве вселенных в контексте многомирового подхода к квантовой механике. Безусловно, существует бесконечно много форм возможных волн вероятности. Даже в одной и той же точке пространства можно непрерывным образом изменять значение волны вероятности, и поэтому число принимаемых ею значений будет бесконечным. Однако волны вероятности не являются физическими характеристиками системы, к которым у нас есть прямой доступ. Наоборот, волны вероятности содержат информацию о возможных различных исходах в заданной ситуации, а их не обязательно бесконечное число. В частности, подготовленный читатель заметит, что квантовая волна (волновая функция) находится в гильбертовом пространстве. Если данное гильбертово пространство конечномерно, то имеется конечное число разных возможных результатов измерений в физической системе, задаваемой этой волновой функцией (то есть любой эрмитов оператор имеет конечное число различных собственных значений). Это приведёт к конечному числу миров для конечного числа наблюдений или измерений. Считается, что гильбертово пространство, ассоциированное с физическими явлениями, происходящими внутри пространства конечного объёма и с ограниченной энергией, является с необходимостью конечномерным (мы остановимся на этом более подробно в главе 9), откуда следует, что число миров также будет конечно.
96
См.: Peter Byrne, «The Many Worlds of Hugh Everett III». New York: Oxford University Press, 2010, p. 177.
97
В разное время многие учёные, включая Нила Грахама; Брайса де Витта; Джеймса Хартли; Эварда Фархи, Джефри Голдстоуна и Сэма Гутмана; Дэвида Дойча; Сидни Коулмена; Дэвида Альберта и других, включая меня самого, независимо обнаружили удивительный математический факт, который, по видимому, является центральным для понимания природы вероятности в квантовой механике. Приведём его формулировку для математически подготовленного читателя: пусть . Пусть
. Пусть
появляется в данном состоянии, принадлежащем
. Тогда имеем следующий математический результат:

То есть при неограниченном росте числа тождественных копий системы волновая функция всей составной системы стремится к собственной функции оператора частоты с собственным значением . Это замечательный результат. Из самого определения собственной функции тогда следует, что в указанном пределе наблюдатель, измеряющий
, что выглядит как самый прямой вывод знаменитого правила Борна для квантово-механической вероятности. С точки зрения многомирового подхода это означает, что миры, в которых число наблюдений
и спин- вниз
рассмотрим состояние
. При измерении это