накрученное вокруг трубочки. Теперь представьте, что вы смотрите на эту трубочку с другого берега реки Гудзон (рис. 4.4


Рис. 4.4.
Или представьте другую визуальную аналогию — огромный ковёр, покрывающий солончаки штата Юта. С высоты птичьего полёта ковёр выглядит как ровная поверхность с двумя измерениями, тянущимися с севера на юг и с запада на восток. Но если спуститься на землю и рассмотреть ковёр вблизи, можно увидеть, что его поверхность покрыта плотным ворсом: крохотные нитяные петельки протянуты в каждой точке ровной основы ковра. У ковра есть два больших, легко видимых измерения (с севера на юг и с запада на восток), но также одно малое измерение (петельки из ниток), которые труднее обнаружить (рис. 4.4
Из предложения Калуцы–Клейна следует, что похожее различие между одними измерениями, большими и легко видимыми, и другими, малыми и слабо различимыми, может иметь место и для структуры самого пространства. Причина, по которой мы всё знаем о привычных трёх пространственных измерениях, может быть в том, что их протяжённость, подобно вертикальной размерности трубочки или географическим измерениям ковра, велики (может даже бесконечны). Однако, если дополнительное пространственное измерение скручено подобно круговому измерению трубочки или ковра и имеет чрезвычайно малый размер — в миллионы или даже в миллиарды раз меньше, чем размер атома, — оно совершенно равноправно обычным нескрученным измерениям и при этом остаётся невидимым даже для самого мощного современного увеличивающего оборудования. Такое измерение действительно может легко потеряться. Так начиналась

Рис. 4.5. Теория Калуцы–Клейна постулирует существование крошечных дополнительных пространственных измерений, прикреплённых к каждой точке обычных больших трёх пространственных измерений. Если бы можно было значительно увеличить структуру пространства, гипотетические дополнительные измерения стали бы видимыми. (Дополнительные измерения прикреплены для пущей ясности только к узловым точкам, изображённым на иллюстрации.)
Из вышесказанного следует, что предложение о «дополнительных» измерениях хоть и непривычно, но всё же не является абсурдом. Неплохое начало, но сразу же возникает вопрос: если вернуться в 1920-е годы, откуда вообще возникла такая экзотическая идея? Калуца заинтересовался этим, потому что вскоре после публикации Эйнштейном общей теории относительности ему на ум пришла одна идея. Он обнаружил, что одним росчерком пера, в прямом смысле слова, он может модифицировать уравнения Эйнштейна и применить их ко вселенной с одним дополнительным пространственным измерением. Результат изучения модифицированных уравнений оказался настолько захватывающим, что, как вспоминает его сын, Калуца повёл себя непривычным для него образом: отбросив обычную сдержанность, он ударил обеими руками по столу, вскочил на ноги и запел арию из «Женитьбы Фигаро».{42} Среди модифицированных уравнений Калуца обнаружил уравнения, уже применённые Эйнштейном для описания гравитации в трёх пространственных и одном временном измерениях. Но поскольку новая формулировка включала одно дополнительное пространственное измерение, Калуца обнаружил дополнительное уравнение.
Как показал Калуца, во вселенной с одним дополнительным пространственным измерением гравитация и электромагнетизм могут быть описаны единым образом как пространственно-временные искривления, рябь. Но гравитация рябит в привычных трёх пространственных измерениях, а электромагнетизм — в четвёртом. Огромной проблемой для гипотезы Калуцы стало объяснение того, почему мы не видим четвёртое пространственное измерение. Именно тогда Калуца предложил описанное выше решение: дополнительные измерения, если они достаточно малы, могут ускользать от фиксации нашими органами чувств и оборудованием.
В 1919 году, узнав о гипотезе объединения в дополнительных измерениях, Эйнштейн засомневался. Он был впечатлён подходом, который позволил продвинуть вперёд его мечту, но его беспокоила неординарность самого метода. После двухгодичных размышлений, задержав при этом выход в печать статьи Калуцы, Эйнштейн наконец-то принял эту идею и мгновенно стал одним из самым рьяных поклонников дополнительных пространственных измерений. В своих собственных поисках единой теории Эйнштейн постоянно возвращался к этой теме.
Несмотря на благословение самого Эйнштейна, последующие исследования показали, что программа Калуцы–Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались искусные способы обойти эту проблему, наравне с всевозможными обобщениями и модификациями исходного предложения Калуцы–Клейна, однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта.
Спустя тридцать лет возникла теория струн. Математический аппарат теории струн не просто разрешал существование во Вселенной дополнительных измерений, он
Большие надежды
В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. Во многом похожая атмосфера царила в 1920-х годах, когда перед учёными распахнул свои двери мир квантовых явлений. При таком возбуждении понятно, что некоторые теоретики заговорили о скорой революции в решении основных проблем фундаментальной физики: слиянии гравитации и квантовой механики, объединении всех сил в природе, объяснении свойств материи, определении числа пространственных измерений, прояснении сингулярностей чёрных дыр, выяснении происхождения Вселенной. Но более умудрённые физики полагали, что такие надежды преждевременны. Теория струн настолько насыщена, обширна и математически трудна, что спустя почти три десятилетия после первой эйфории современные учёные одолели лишь часть исследовательского пути. С учётом того, что мир квантовой гравитации в сотни миллиардов миллиардов раз меньше чем всё, что мы