Космическая плотность зависит от формы кривой на рисунке. При ускоренном расширении пространство будет бесконечно расширяться, разводя удалённые галактики всё дальше и всё быстрее. Через сто миллиардов лет любая галактика, не находящаяся сейчас в нашей окрестности (в гравитационном кластере, состоящем примерно из дюжины галактик, называемом нашей «местной группой»), выйдет за пределы нашего космического горизонта и перестанет быть видимой для нас. Если у астрономов будущего не будет под рукой записей, оставленных для них в более ранние эпохи, их космологические теории будут создаваться в попытке объяснить изолированную вселенную с небольшим числом галактик, одиноко плывущую в море неподвижного мрака. Мы живём в особенную эпоху. Ускоренное расширение лишит нас знания, дарованного Вселенной.
Далее мы увидим, что ограничения на возможности будущих астрономов ещё более поражают, когда мы пониманием, сколь огромно космическое пространства, как это установило наше поколение, стремясь объяснить ускоренное расширение.
Космологическая постоянная
Если бы вы увидели, что скорость мяча, подброшенного вверх, вдруг начала
Полученные данные также позволили исследователям определить численное значение космологической постоянной — количество тёмной энергии, заполняющей пространство. Выразив полученный результат через массовый эквивалент, как это принято среди физиков (используя формулу
Для соответствия с принятыми соглашениями мне следует выразить величину космологической постоянной в удобных единицах, наиболее часто используемых в физике. Согласитесь, странно просить продавца взвесить 1015 пикограмм картофеля (разумнее попросить 1 килограмм, в эквивалентных и более адекватных единицах меры), и ваш друг удивится, если вы попросите его подождать вас 109 наносекунд (лучше сказать, что вы будете через 1 секунду, в эквивалентных, но более удобных единицах времени). Для физиков столь же странно измерять энергию космологической постоянной в граммах на кубический сантиметр. По причинам, которые скоро прояснятся, естественным выбором будет выражение величины космологической постоянной в виде множителя от так называемой планковской массы (примерно 10?5 грамма), делённой на планковскую длину в кубе (куб с ребром примерно 10?33 сантиметра, что даёт для объёма примерно 10?99 кубического сантиметра). Измеренная в таких единицах величина космологической постоянной составляет примерно 10?123, крохотное число, приведённое в самом начале этой главы. {68}
Можно ли доверять такому результату? За годы, прошедшие с момента первых измерений, были получены ещё более убедительные данные, подтверждающие ускоренное расширение. Более того, новые экспериментальные данные (направленные, например, на анализ детальных свойств реликтового излучения; см. книгу «Ткань космоса», глава 14) прекрасно согласуются с данными по сверхновым. Если и есть место для манёвра, то оно может быть связано только с самим объяснением ускоренного расширения. Принимая, что общая теория относительности является математическим описанием гравитационного взаимодействия, единственной возможностью действительно является антигравитация, порождённая космологической постоянной. Другие возможные объяснения можно получить, если изменить эту картину, включив в неё дополнительные экзотические квантовые поля (которые, подобно тому что мы видели в инфляционной космологии, могут в определённые периоды космической эволюции маскироваться под космологическую постоянную){69}, либо изменить уравнения общей теории относительности (чтобы гравитационное притяжение убывало с расстоянием сильнее, чем это следует из механики Ньютона или теории Эйнштейна, позволяя таким образом удалённым областям разлетаться быстрее и не требуя присутствия космологической постоянной). Однако на сегодняшний день простейшее и наиболее убедительное объяснение наблюдаемому ускоренному расширению состоит в том, что космологическая постоянна отлична от нуля, а потому пространство заполнено тёмной энергией.
Для многих исследователей открытие ненулевой космологической постоянной стало самым удивительным наблюдательным результатом, о котором они когда-либо слышали.
Объяснение нуля
Когда я впервые столкнулся с данными по сверхновым, предполагающими ненулевое значение космологической постоянной, моя реакция была типичной для многих физиков. «Этого просто не может быть!» Большинство (но не все) теоретиков давно пришли к выводу, что значение космологической постоянной равно нулю. Такая точка зрения изначально возникла из истории про «самую большую ошибку Эйнштейна», но со временем возникло множество убедительных аргументов в её поддержку. Самый сильный основан на принципе квантовой неопределённости.
В силу квантовой неопределённости и сопутствующих флуктуаций, присущих всем квантовым полям, даже в пустом пространстве происходит неистовая микроскопическая активность. Подобно атомам, сталкивающимся со стенками сосуда, или детям, прыгающим по детской площадке, квантовые флуктуации обладают определённой энергией. Однако, в отличие от атомов и детей, квантовые флуктуации повсеместны и неизбежны. Нельзя объявить, что некоторая область пространства закрыта и отправить все квантовые флуктуации домой; энергия, присущая квантовым флуктуациям, пронизывает всё пространство и не может быть удалена. Поскольку космологическая постоянная есть не что иное, как энергия, пронизывающая пространство, то квантовые флуктуации являются именно тем микроскопическим механизмом, который