
Рис. 8.6. Согласно копенгагенскому описанию квантовой механики, при измерении или наблюдении волны вероятности частицы она мгновенно коллапсирует везде, кроме одной точки. Из всего множества возможных местоположений остаётся одно выделенное положение
Я вполне пойму, если такое объяснение заставит вас покачать головой. Спору нет, квантовая догма звучит как шарлатанство. Действительно, предлагается теория, утверждающая совершенно поразительную картину реальности, основанную на волнах вероятностей, после чего буквально сразу заявляющая, что увидеть эти волны нельзя. Представьте, что некая барышня говорит, будто она блондинка, но если кто-то взглянет на неё, то она немедленно становится рыжей. Почему физики согласились с теорией, которая помимо того, что странная, ещё и выглядит откровенно ненадёжной?
К счастью, несмотря на все свои странности и скрытые свойства, квантовая механика является проверяемой теорией. Согласно копенгагенской интерпретации, чем выше волна вероятности в какой-то выделенной точке, тем больше шанс, что при схлопывании волны её единственный оставшийся пик — то есть сам электрон — будет расположен именно там. Такое утверждение обладает предсказательной силой. Проводите какой-нибудь эксперимент снова и снова, подсчитайте, как часто вы обнаруживаете частицы в тех или иных местах, и оцените, согласуются ли наблюдаемые частоты появления частиц с вероятностями, которые задаёт волна вероятности. Если волна в 2,784 раза выше
Трудно, но не невозможно.
Это приводит нас к третьему и самому трудному вопросу. Коллапс волн вероятности при измерении (рис. 8.6) является ключевым моментом в копенгагенской интерпретации квантовой теории. Совокупность успешных предсказаний и выдающаяся способность Бора убеждать заставили большинство физиков принять копенгагенскую интерпретацию. Однако немного поразмыслив, можно быстро выявить одно неудобное свойство. Уравнение Шрёдингера, математический мотор квантовой механики, определяет изменение формы волны вероятности со временем. Дайте мне исходную форму волны, например, такую как на рис. 8.5
Бор предложил некий способ, довольно неуклюжий, задвинуть проблему: следует использовать уравнение Шрёдингера и найти волны вероятности, когда не происходит никакого наблюдения или измерения. Но при наблюдении, продолжает Бор, уравнение Шрёдингера следует отодвинуть в сторонку и
Однако такое предписание не только нескладное, произвольное и не имеет математического обоснования, оно даже не является
Таким образом, мы подходим к следующему способу осмысления этой проблемы. Мы с вами, наши компьютеры, бактерии и вирусы и всё материальное на этом свете состоит из атомов и молекул, которые сами сложены из частиц типа электронов и кварков. Уравнение Шрёдингера выполняется для электронов и кварков, и есть все основания считать, что оно верно и для более сложноустроенных тел, независимо от общего числа составляющих их частиц. Это означает, что уравнение Шрёдингера будет продолжать быть верным и при измерении. Помимо всего прочего, измерение — это всего лишь какой-то набор частиц (человек, прибор, компьютер...), вступающий в контакт с другим набором (измеряемая частица или частицы). В этом случае, если математическая сторона уравнения Шрёдингера остаётся при этом непротиворечивой, рассуждения Бора наталкиваются на проблему. Уравнение Шрёдингера не позволяет волнам схлопнуться. Таким образом, существенный элемент копенгагенской интерпретации оказывается под сомнением.
Итак, третий вопрос таков: если проведённые выше рассуждения верны и волны вероятности не схлопываются, то как перейти от совокупности возможных результатов до проведения измерения к единственному результату после измерения? Или, если сформулировать вопрос более широко, что происходит с волной вероятности во время измерения, что позволяет проявиться привычной, определённой и единственной реальности?
Эверетт изучил этот вопрос в своей принстонской докторской диссертации и пришёл к неожиданному выводу.
Линейность и неудовлетворённость
Чтобы понять, как Эверетт пришёл к своему открытию, следует иметь чуть большее представление об уравнении Шрёдингера. Я уже подчёркивал, что уравнение не позволяет волнам вероятности внезапно схлопываться. Но почему? И что оно
Это совсем несложно, потому что уравнение Шрёдингера относится к одному из самых простых классов математических уравнений, характеризующихся свойством