рано или поздно точный ответ будет получен. Каждый шаг вычислений не требует никакой оригинальности или новизны; это исключительно вопрос уточнения результата. Тогда на практике, для симуляции движения бейсбольного мяча компьютер программируется уравнениями, являющимися
Наоборот, компьютер, пытающийся просчитать невычислимую функцию, будет крутиться неопределённо долго, не приходя ни к какому ответу, независимо от его скорости и памяти. Так будет происходить при компьютерном вычислении точной непрерывной траектории бейсбольного мяча. В качестве более ощутимого примера представим смоделированную вселенную, в которой компьютер запрограммирован для создания поразительно работоспособного смоделированного повара, который готовит пищу для всех тех смоделированных обитателей — и только для них, — кто не готовит себе еду. Пока повар неистово печёт, жарит и парит, у него появляется аппетит. Вопрос: кого компьютер обяжет приготовить еду для повара?{128} Задумайтесь об этом, и голова у вас распухнет. Повар не может готовить для себя, потому что он готовит только для тех, кто не готовит для себя, но если повар не готовит для себя, то он относится к тем, для кого он должен готовить. Будьте уверены, компьютер справится не лучше вас. Невычислимые функции похожи на этот пример: они ставят в тупик способность компьютера завершить вычисление, и исполняемая компьютером симуляция зависает. Поэтому успешные вселенные, входящие в состав смоделированной мультивселенной, будут основываться на вычислимых функциях.
В этих рассуждениях предполагается, что существует пересечение между смоделированной и окончательной мультивселенными. Рассмотрим уменьшенную версию окончательной мультивселенной, включающую только те вселенные, которые возникают на основе вычислимых функций. Тогда, вместо того чтобы просто быть постулированной в виде ответа на один частный вопрос — почему эта вселенная реальна, а другие возможные вселенные нет? — уменьшенная версия окончательной мультивселенной может возникать как итог некоторого процесса. Армия компьютерных пользователей из будущего, возможно, не сильно отличающихся по темпераменту от сегодняшних энтузиастов игры Second Life, могла бы создать эту мультивселенную в результате своего ненасытного увлечения использованием симуляций, основанных каждый раз на новых уравнениях. Эти пользователи не смогут создать все смоделированные вселенные из математической библиотеки Вавилона, потому что те из них, которые основаны на невычислимых функциях, невозможно будет запустить. Но они будут непрестанно прокладывать себе дорогу сквозь вычисляемое крыло библиотеки.
Расширив первоначальные идеи Цузе, учёный-компьютерщик Юрген Шмидхубер пришёл к похожему заключению, но с другой точки зрения. Шмидхубер осознал, что на самом деле легче запрограммировать компьютер для создания сразу всех возможных вычислимых вселенных, чем индивидуально запрограммировать компьютеры для их создания одной за другой. Чтобы понять почему, представим программирование компьютера для симуляции игры в бейсбол. В каждой игре количество необходимой информации огромно: каждая деталь каждого игрока, физическая и ментальная, каждая деталь стадиона, арбитров, погоды и так далее. Каждая новая симуляция игры требует от вас задать новую груду данных. Однако, если вы решите смоделировать не одну или несколько игр, но вообще
Суть в том, что для задания какой-либо одной составляющей из большого набора требуется большое количество информации, а задание всего набора в целом зачастую гораздо проще. Шмидхубер обнаружил, что это заключение применимо к смоделированным вселенным. Программист, приглашённый для симуляции набора вселенных, основанных на определённом наборе математических уравнений, может пойти простым путём: подобно бейсбольному фанату, он может предпочесть написать одну, относительно короткую программу, которая создаст
Любой из этих сценариев — много пользователей, моделирующих много вселенных, или одна мастер-программа, моделирующая их все разом — пригоден для образования смоделированной мультивселенной. Поскольку возникающие вселенные будут основываться на широком наборе различных математических законов, можно эквивалентным образом считать, что эти сценарии генерируют часть окончательной мультивселенной — ту часть, что охватывает вселенные, основанные на вычислимых математических функциях.[40]
Недостаток генерации только части окончательной мультивселенной в том, что в уменьшенной версии не так ясно видна идея, которая изначально вдохновила Нозика на принцип изобилия. Если все возможные вселенные не существуют, если полная окончательная мультивселенная не генерируется, то опять всплывает вопрос, почему некоторые уравнения реализуются в природе, а другие нет. В частности, мы по-прежнему будем задаваться вопросом, почему вселенные, основанные на вычислимых уравнениях, занимают такое выделенное место под солнцем.
Продолжая крайне спекулятивную линию изложения этой главы, заметим, что разделение на вычислимые/невычислимые о чём-то нам говорит. Вычислимые математические уравнения позволяют обойти неудобные вопросы, которые были подняты в середине предыдущего столетия такими выдающимися мыслителями, как Курт Гёдель, Алан Тьюринг и Алонзо Чёрч. Знаменитая
Будет ли у