114: if (argc != 2) {
115: fprintf(stderr, 'поддерживается только один аргумент
');
116: return 1;
117: }
118:
119: /* Создание сокетов. Один служит для родительского процесса,
120: второй — для дочернего (мы можем поменять их местами,
121: если нужно). */
122: if (socketpair(PF_UNIX, SOCK_STREAM, 0, socks))
123: die('socketpair');
124:
125: if (!fork()) {
126: /* дочерний процесс */
127: close(socks[0]);
128: return childProcess(argv[1], socks[1]);
129: }
130:
131: /* родительский процесс */
132: close(socks[1]);
133: parentProcess(socks[0]);
134:
135: /* закрытие дочернего процесса */
136: wait(&status);
137:
138: if (WEXITSTATUS(status))
139: fprintf(stderr, 'childfailed
');
140:
141: return 0;
142: }
17.5. Сетевая обработка с помощью TCP/IP
Самое важное применение сокетов заключается в том, что они позволяют приложениям, работающим на основе различных механизмов, общаться друг с другом. Семейство протоколов TCP/IP [34] используется в Internet самым большим в мире числом компьютеров, объединенных в сеть. Система Linux предлагает полную устойчивую реализацию TCP/IP, которая позволяет действовать и как сервер, и как клиент TCP/IP.
Наиболее распространенной версией TCP/IP является версия 4 (IPv4). В данный момент для большинства операционных систем и продуктов сетевой инфраструктуры уже доступна версия 6 протокола TCP/IP (IPv6), однако IPv4 доминирует до сих пор. В данном разделе мы сосредоточимся на создании приложений для IPv4, но обратим внимание на отличия для приложений IPv6, а также для тех программ, которые должны поддерживать обе версии.
17.5.1. Упорядочение байтов
Сети TCP/IP, как правило, являются неоднородными; они включают в себя широкий ряд механизмов и архитектур. Одно из основных отличий между архитектурами связано со способом хранения чисел.
Машинные числа составляются из последовательности байтов. Например, целые числа в С обычно представляются 4 байтами (32 битами). Существует довольно много способов хранения этих четырех байтов в памяти компьютера. Архитектуры с обратным порядком байтов сохраняют старший (наиболее значимый) байт в наименьшем аппаратном адресе, остальные следуют в порядке от более значимого к менее значимому. Механизмы с прямым порядком байтов хранят многобайтовые значения в абсолютно противоположном порядке: наименее значимый байт отправляется в наименьший адрес памяти. В других механизмах байты сохраняются в различных порядках.
Так как многобайтовые значения являются частью протокола TCP/IP, то разработчики протоколов позаботились о едином стандарте способа передачи многобайтовых значений через сеть[126]. TCP/IP требует использования обратного порядка байтов для передачи протокольной информации и рекомендует также применять его к данным приложений (хотя попытки зафиксировать формат потока данных приложений не предпринимались) [127]. Упорядочение, которое применяется для многобайтовых значений, передаваемых через сеть, известно как сетевой порядок байтов.
Для преобразования порядка байтов хоста в сетевой порядок байтов используются четыре функции.
#include <netinet/in.h>
unsigned int htonl(unsigned int hostlong);
unsigned short htons(unsigned short hostshort);
unsigned int ntohl(unsigned int netlong);
unsigned short ntohs(unsigned short netshort);
Несмотря на то что прототип каждой из этих функций принимает значение без знака, все они отлично работают и для значений со знаком.
Первые две функции htonl()
и htons()
преобразуют длинные и короткие числа соответственно из порядка байтов хоста в сетевой порядок байтов. Последние две ntohl()
и ntohs()
выполняют обратные преобразования длинных и коротких чисел (из сетевого порядка в порядок хоста).
Хотя мы использовали термин htonl()
и ntohl()
принимают 32-битные значения, а не те, которые относятся к типу long
. В прототипах обеих функций предполагалось, что они обрабатывают значения int
, поскольку все платформы Linux в настоящее время используют 32-битные целые числа.
17.5.2. Адресация IPv4
Соединения IPv4 представляют собой кортеж из 4-х элементов (