Чтобы помочь прояснить разные значения, которые может принимать si_code, рассмотрим пример, в котором SIGCHLD генерируется четырьмя разными способами: kill(), sigqueue(), raise() (использует системный вызов tkill()) и созданием дочернего процесса, который немедленно прерывается.

 1: /* sicode.с */

 2:

 3: #include <sys/signal.h>

 4: #include <stdlib.h>

 5: #include <stdio.h>

 6: #include <unistd.h>

 7:

 8: #ifndef SI_TKILL

 9: #define SI_TKILL -6

10: #endif

11:

12: void handler(int signo, siginfo_t *info, void *f ) {

13:  static int count = 0;

14:

15:  printf('перехвачен сигнал, отправленный ');

16:  switch(info->si_code) {

17:  case SI_USER:

18:   printf('kill() '); break;

19:  case SI_QUEUE:

20:   printf('sigqueue() '); break;

21:  case SI_TKILL:

22:   printf('tkill() или raise() '); break;

23:  case CLD_EXITED:

24:   printf ('ядро сообщает, что дочерний процесс завершен '); exit(0);

25:  }

26:

27:  if (++count == 4) exit(1);

28: }

29:

30: int main() {

31:  struct sigaction act;

32:  union sigval val;

33:  pid_t pid = getpid();

34:

35:  val.sival_int = 1234;

36:

37:  act.sa_sigaction = handler;

38:  sigemptyset(&act.sa_mask);

39:  act.sa_flags = SA_SIGINFO;

40:  sigaction(SIGCHLD, &act, NULL);

41:

42:  kill(pid, SIGCHLD);

43:  sigqueue(pid, SIGCHLD, val);

44:  raise(SIGCHLD);

45:

46:  /* Чтобы получить SIGCHLD от ядра, мы создаем дочерний процесс

47:     и немедленно завершаем его. Обработчик сигнала выйдет после

48:     получения сигнала от ядра, поэтому мы просто засыпаем

49:     на время и позволяем программе прерваться подобным образом. */

50:

51:  if (!fork()) exit(0);

52:  sleep(60);

53:

54:  return 0;

55: }

Если si_code равно SI_USER, SI_QUEUE или SI_TKILL, то доступны два дополнительных члена siginfo_t: si_pid и si_uid, которые представляют идентификатор процесса, пославшего сигнал и действительный идентификатор пользователя этого процесса.

Когда ядром посылается SIGCHLD, доступны члены si_pid, si_status, si_utime и si_stime. Первый из них, si_pid, задает идентификатор процесса, состояние которого изменилось[72]. Информация о новом состоянии доступна как в si_code (как показано в табл. 12.3) и в si_status, что идентично целому значению состояния, возвращаемому семейством функций wait().

Последние два члена, si_utime и si_stime, определяют период времени, которое потрачено дочерним приложением на работу в пользовательском режиме и в режиме ядра, соответственно (это подобно тому, что возвращают вызовы wait3() и wait4() в структуре struct rusage). Это время измеряется в тиках часов, заданных целым числом. Количество тиков в секунду задает макрос _SC_CLK_TCK, определенный в <sysconf.h>.

SIGSEGV, SIGBUS, SIGILL и SIGFPE — все они представляют si_addr, специфицирующий адрес, который вызвал сбой, описанный si code.

Ниже приведен простой пример проверки контекста сигнала. Он устанавливает обработчик сигнала для SIGSEGV, который печатает контекст сигнала и прерывает процесс. Нарушение сегментации генерируется попыткой обращения к NULL.

 1: /* catch-segv.c */

 2:

 3: #include <sys/signal.h>

 4: #include <stdlib.h>

 5: #include <stdio.h>

 6:

 7: void handler(int signo, siginfo_t *info, void *f) {

 8:  printf('перехват');

 9:  if (info->si_signo == SIGSEGV)

10:   printf('segv accessing %p', info->si_addr);

11:  if (info->si_code == SEGV_MAPERR)

12:   printf('SEGV_MAPERR');

13:  printf(' ');

14:

15:  exit(1);

16: }

17:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату