Рис. 34

Рупор. Мы уже знаем, что воздух состоит из многочисленных отдельных частиц. При возникновении звука частицы воздуха, находящиеся около звучащего тела, передают толчки соседним частицам, которые толкают следующие, и т. д., и таким образом звук доходит до нашего уха.

При разрежении воздуха расстояния между частицами увеличиваются, и передача толчков, а значит, и звука ослабляется. В безвоздушном пространстве звук передаваться вообще не может. У кого есть воздушный насос, тот легко может в этом убедиться.

Возьмите, например, электрический звонок и положите его под колпак воздушного насоса. Звонок нужно положить на небольшую подушечку, чтобы звук его не передавался наружу через стол. Включите ток и, пока звонок работает, начните выкачивать воздух. Сначала звон будет сильным, потом станет тише и наконец будет едва слышен, как будто звонок звонит далеко и еле-еле работает, хотя на самом деле вы видите частые удары молоточка, которые показывают, что звонок действует.

Частицы воздуха напоминают по своим свойствам упругие мячики. Поэтому, пользуясь обычным резиновым мячом, можно получать некоторые явления, похожие на те, которые происходят в воздухе при передаче звука его частицами.

Сделайте, например, пометку мелом на стенке, на высоте вашего роста, прямо против себя, и с силой бросьте мячик в стену. Он вернется по тому же направлению, по которому был брошен. Если вы отойдете в сторону от пометки на стене и бросите в нее мячик, он отскочит в противоположную от вас сторону. Можно заранее сказать, в каком направлении он отскочит от стены. Если восставить перпендикуляр из точки удара мячика о стену и измерить угол, под которым мячик ударился, можно заметить, что он отскочил от стены под тем же углом к перпендикуляру. Первый угол называется углом падения, а второй — углом отражения. Поэтому физики говорят, что угол падения равен углу отражения (рис. 35, внизу). Этому же закону подчиняется и звук.

Рис. 35

Явление отражения звука навело на мысль построить такие инструменты, при помощи которых звук можно передавать на большие расстояния. Мы знаем, что звук распространяется во всех направлениях и поэтому очень быстро ослабевает. С помощью рупора мы можем направить звук большой силы в одном определенном направлении. Сотни лет искали наилучшую форму рупора, но оказалось, что, какую бы фигуру ему ни придавали, он не получается много лучше простого рупора, который легко сделать самому.

Склейте из картона коническую трубу длиной примерно 1 метр так, чтобы диаметр раструба получился 15–20 сантиметров и узкий конец конуса имел отверстие диаметром сантиметра три. К этому концу рупора приклейте небольшую воронку так, чтобы ею удобно было закрывать рот. Когда рупор высохнет, приложите рот к воронке, а раструб направьте в ту сторону, куда хотите направить звук. Стенки рупора не дадут рассеяться звуку во все стороны, и сила звука будет ослабевать с расстоянием значительно меньше, чем без рупора.

Рис. 35 показывает, как благодаря рупору звуковые колебания, отражаясь от его стенок, распространяются по направлению параллельному оси рупора. С помощью хорошего рупора длиной 2 метра можно разговаривать на расстоянии в километр, а при тихой погоде, да еще ночью, даже дальше.

Звук так хорошо распространяется в трубах, что часто в учреждениях устраивают очень простую связь: из одного помещения в другое проводят трубу и разговаривают по этому примитивному телефону.

Часто на небольших морских и речных судах капитанский мостик и помещение рулевого связаны трубами с машинным отделением. Да и между каютами иногда прокладывают такой примитивный, но очень надежный телефон.

Искусственный гром. Для этого опыта вам не нужно никаких электрических приборов. Все заменит кусок бечевки. Приложите один кусок бечевки к уху и попросите товарища отойти с другим концом ее и довольно сильно натянуть. Теперь, если ваш товарищ будет очень тихо ударять по бечевке пальцами, вы услышите как бы стук дождевых капель о раму окна. Если он будет водить по бечевке гвоздем, вам послышится завывание бури. Если же ваш помощник будет катать шнур между пальцами, вы ясно услышите раскаты грома. При легком подергивании бечевки получается впечатление боя часов.

Попробуйте привязать бечевку к железным щипцам, которыми берут уголь из печи, приложите концы бечевки к ушам и стукните щипцами о ножку стола или какой-нибудь металлический предмет (рис. 36). Что вы услышите?

Рис. 36

Акустические обманы. Слух, как и другие наши чувства, иногда обманывает нас. Можно ошибиться и в силе звука, и в исходной точке его. Раскаты грома так могущественны, что мы затрудняемся сравнивать их с каким-нибудь другим шумом, и все-таки гром можно совершенно заглушить, комкая бумагу у самого уха. Это не значит, конечно, что комканье бумаги громче грома. Просто настолько велика разница в расстояниях, что звук комканья бумаги воспринимается нами сильнее страшных раскатов грома.

Очень часто бывают ошибки в определении направления звука. Часто, услышав эхо, можно подумать, что именно в той стороне, откуда послышалось эхо, находится человек. Торопясь к трамваю, мы часто зря бежим, чтобы успеть сесть в него. Представьте себе, что вы идете по улице, упирающейся в другую, по которой проложена трамвайная линия, как показано на рис. 37.

Рис. 37

Вы слышите приближение трамвая, решаете, что он идет слева, торопитесь добежать до угла. В большинстве случаев вы ошибаетесь: оказывается, что он идет справа. Бывает и наоборот: если вам нужно сесть в трамвай, идущий справа, левый трамвай вводит вас в заблуждение. Объясняется это очень просто. Вы идете по правой стороне улицы, и трамвай приближается справа. Он скрыт от вас углом дома, и вы его не видите, но слышите. Звук в этом случае попадает в ухо не прямым путем. Мы знаем, что звук распространяется во все стороны. Каждое из этих направлений мы можем назвать звуковым лучом.

Рассмотрим один из звуковых лучей, исходящих от движущегося трамвая (на рисунке он обозначен жирной чертой). Сначала луч звука падает на сторону А улицы, по которой идет трамвай. От этой стороны, по известному уже нам закону, он отражается и попадает на сторону Б. Отразившись и от нее, он достигает нашего левого уха. Поэтому вы думаете, что трамвай идет с левой стороны, так как мы привыкли считать, что звук исходит от тела, находящегося на линии звукового луча.

Говорящие фигуры. Для этого опыта нам нужны два вогнутых зеркала. Их нетрудно сделать самому. Так как зеркала эти будут служить только для опытов со звуком, их можно сделать из папки. Блеск этим зеркалам не нужен, и особенной точности тоже не требуется.

Если вы представите себе вогнутое зеркало, рассеченное через центр пополам, то, очевидно, линия разреза будет дугой, радиус которой будет равен радиусу того шара, часть которого составляет вогнутое зеркало. Если вы захотите сделать вогнутое зеркало с радиусом 1 метр (этот размер как раз хорош для нашего опыта), возьмите кусок картона длиной сантиметров семьдесят и метровый шнурок. Начертите на

Вы читаете Физика в играх
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату