Особенно благоговейно к этому явлению относились моряки. Их охватывал радостный трепет, когда в обстановке низко летящих облаков на концах мачт вдруг возникало свечение — символ того, что святой Эльм (Эрас-мус) принял судно под свое покровительство. Эти огни дали морякам Христофора Колумба второе дыхание. Упавшие было духом, они увидели в сиянии огней знак того, что их бедам и мытарствам скоро будет конец.

Нас Эльма огни святого хранят

На мачтах, как блеск свечи.

Глотая лишь соль, не глядя назад,

Привыкли мы в ночь идти.

Еще у древнегреческих мореходов эти огни были добрым знаком, ведь их зажигала Прекрасная Елена — сестра Диоскуров, которые покровительствовали морякам. Эти огни были знаком того, что буря, гроза утихомириваются.

Для корабельных радистов эти огни создают радио-помехи, сильно электризуют радиоантенну. Этот тлеющий разряд сходен с огнями неоновых реклам и возникает вследствие стекания электрического заряда с острых концов различного рода предметов.

В горах, как правило, это явление достигает максимума, когда основание облака почти касается земли. В долинах оно тоже хорошо проявляется. При возникновении этих огней, венчающих головы и пальцы людей, слышен сильный треск, а от голов и пальцев поднимаются светящиеся языки длиной в несколько сантиметров. Вокруг голов возникает сияющий нимб, а с концов палок, ледорубов стекают языки пламени. Не исключено, что горящий и не сгорающий куст, в виде которого Бог беседовал с Моисеем на горе Синай, был не чем иным, как огнями святого Эльма.

Полагают, что свечение более ярко, когда грозовое облако на своей нижней границе имеет отрицательный заряд. В этом случае свечение приобретает красноватый оттенок. Когда нижняя часть облака заряжена положительно, свечение слабее и имеет голубоватый оттенок. Кстати, этот оттенок встречается реже, чем красный.

Огни Эльма можно наблюдать не только во время грозы. Они возникают во время сильных песчаных бурь, когда мчащиеся с большой скоростью песчинки сильно электризуются. Отмечались эти огни и во время извержений вулканов.

У жителей Швейцарских Альп огни святого Эльма служили для предсказания грозы. На возвышенном месте, например на стене замка, водружалось копье с деревянным древком. Стражник замка время от времени подносил к этому копью алебарду и, если появлялись искры, звонил в колокол, предупреждая крестьян, пастухов и рыбаков о приближающейся грозе.

Эти огни появляются и на самолетах, на винтах и различных выступающих заостренных частях корпуса. Их появление отнюдь не радует пилотов, так как эти разряды создают сильные радиопомехи, известные как статические помехи. Для уменьшения помех на самолетах устанавливаются специальные разрядники — металлические метелочки, расположенные на некотором расстоянии друг от друга. Эти разрядники не дают накопиться на корпусе большому заряду, а появляющийся заряд постепенно «сцеживается» в атмосферу.

Электрическая корона

Рассмотрим подробнее электрическое явление, которое помогает понять происходящие в атмосфере процессы. Разновидностью тлеющего разряда является коронный разряд, или электрическая корона. Коронный разряд возникает при резко выраженной неоднородности электрического поля вблизи одного или обоих электродов. Подобные поля формируются у электродов с очень большой кривизной поверхности. Это различные острые части механизмов или даже тонкие провода. При коронном разряде эти электроды окружены характерным свечением, также получившим название короны, или коронирующего слоя. Примыкающая к короне несветящаяся («темная») область межэлектродного пространства называется внешней зоной. Корона часто появляется на высоких остроконечных предметах (огни святого Эльма), вокруг проводов линий электропередач и т. д. Коронный разряд может иметь место при различных давлениях газа в разрядном промежутке, но наиболее отчетливо он проявляется при давлении не ниже атмосферного.

Появление коронного разряда объясняется ионной лавиной. В газе всегда есть некоторое число ионов и электронов, возникающих случайно. Однако число их настолько мало, что газ практически не проводит электричество. При достаточно большой напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя соударениями, может сделаться достаточной, чтобы ионизировать нейтральную молекулу при ударе. В результате образуется новый отрицательный электрон и положительно заряженный остаток — ион.

Свободный электрон при соударении с нейтральной молекулой расщепляет ее на электрон и свободный положительный ион. Электроны при дальнейшем соударении с нейтральными молекулами снова расщепляют их на электроны и свободные положительные ионы и т. д.

Такой процесс ионизации называют ударной ионизацией, а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома, — работой ионизации. Работа ионизации зависит от строения атома и поэтому различна для разных газов. Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивают число зарядов в газе, причем, в свою очередь, приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, процесс усиливает сам себя, и ионизация в газе быстро достигает очень большой величины. Явление аналогично снежной лавине, поэтому и процесс был назван ионной лавиной.

Натянем на двух высоких изолирующих подставках металлическую проволоку, имеющую диаметр несколько десятых миллиметра, и соединим ее с отрицательным полюсом генератора, дающего напряжение несколько тысяч вольт. Второй полюс генератора отведем к земле. Получится своеобразный конденсатор, обкладками которого являются проволока и стены комнаты, естественно, сообщающиеся с землей.

Поле в этом конденсаторе весьма неоднородно, и напряженность его вблизи тонкой проволоки очень велика. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение (корона), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием. Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее — по воздуху комнаты к стенам, между проволокой и стенами он переносится ионами, образованными в комнате благодаря ударной ионизации. Таким образом, свечение воздуха и появление тока указывают на сильную ионизацию воздуха под действием электрического поля. Коронный разряд может возникнуть не только вблизи проволоки, но и у острия, и вообще вблизи любых электродов, возле которых образуется очень сильное неоднородное поле.

Коронный разряд имеет весьма широкое применение в современных технологиях. Вот в каких процессах его применяют:

• Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если ввести в него острые металлические электроды, соединенные с электрической машиной, все твердые и жидкие частицы будут осаждаться на электродах. Объяснение опыта заключается в следующем: как только вблизи проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы прилипают к частицам пыли и заряжают их. Так как внутри трубки действует сильное электрическое поле, заряженные частицы пыли движутся под действием поля к электродам, где и оседают.

• Счетчики элементарных частиц. Счетчик элементарных частиц Гейгера — Мюллера состоит из небольшого металлического цилиндра, снабженного окошком, закрытым фольгой, и тонкой металлической проволоки, натянутой по оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник тока, напряжение которого равно нескольким тысячам вольт. Выбирают напряжение, необходимое для появления коронного разряда внутри счетчика.

При попадании в счетчик быстро движущегося электрона последний ионизирует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату