силовых линий с дневной стороны магнитосферы сносится на ночную, образуя гигантский хвост магнитосферы протяженностью в миллионы километров. Основная часть проникающей из солнечного ветра плазмы движется в антисолнечном направлении вдоль магнитосферной мантии. В процессе этого движения заряженные частицы перемещаются в центральную область хвоста магнитосферы и образуют плазменный хвост. Из него вдоль магнитных силовых линий они могут переходить в ночной сектор. Такой поток высыпающихся в атмосферу частиц постоянно генерирует полярное сияние.

Поскольку мы мыслим масштабами Солнечной системы, можно задать вопрос о том, существует ли свечение атмосферы на других планетах или спутниках? Существование полярных сияний на других телах Солнечной системы зависит от интенсивности их магнитного поля, а также плотности и состава атмосферы. В магнитосфере Меркурия сияния следует ожидать на широтах от 50 до 70 градусов на дневной стороне и от 25 до 35 градусов — на ночной. Тонкая гелиевая атмосфера Меркурия должна приводить к появлению сияний вблизи поверхности планеты в эмиссионных линиях гелия. На Венере очень слабое магнитное поле и плотная атмосфера. Но и там диффузные сияния должны наблюдаться, причем над большей частью поверхности планеты. Тонкая атмосфера Марса и его слабое магнитное поле не очень способствуют возникновению сияний. Наиболее подходящие условия для появления сияний существуют в магнитосфере Юпитера. И магнитное поле у планеты сильное, и атмосфера плотная. Спутники некоторых планет также имеют атмосферы. Например, спутник Сатурна Титан. Космические путешествия в эти далекие миры обязательно подарят исследователям множество чудесных открытий.

Но даже сейчас, когда наблюдатели еще не могут высадиться на поверхность далеких планет, космонавты с орбиты наблюдают полярные сияния. Интересно то, что из космоса полярные сияния видны всегда, и одновременно над большими территориями. Такие наблюдения производят неизгладимое впечатление, потому что отсутствует ослабляющее и искажающее влияние плотных слоев атмосферы. Иногда космонавты даже пролетают сквозь полярное сияние.

На станции «Салют-6» 11 и 12 апреля 1981 года космонавт В. В. Коваленок сделал следующую запись в бортовом журнале: «Вошли в полярное сияние. Идем в полярном сиянии. Слева по курсу оно имеет красный цвет. В 15:25 наблюдается несколько столбов. Красный цвет достигает Скорпиона (хвоста)… Идем, как в облачности, как в тумане. Сейчас над нами массивные полосы… Красные лучи доходят до Ориона, выше они приобретают голубоватый оттенок, а слева от станции — красно-оранжевый цвет… На фоне Земли видна лучистая структура каждой дуги полярного сияния». В это же самое время была отмечена сильная магнитная буря. 12 апреля 1981 года на 364-ом витке была сделана новая запись: «Очень много голубого цвета. Видим голубые лучи. Bот взметнулся голубой столб, вот взметнулся красный. По высоте голубые столбы 15 градусов. Игра красок: слева от Канопуса красный столб, зеленовато-голубое свечение, справа от него в направлении на Южный Крест — голубой столб. Очень редкое явление в полярных сияниях».

Полярные сияния можно вызвать искусственно! В 1975 году начался советско-французский эксперимент «Араке». Были выбраны две магнитно-сопряженные точки на поверхности земного шара. Это точки, расположенные на одной и той же силовой линии. Точки были выбраны следующие: в Северном полушарии — поселок Согра в Архангельской области, другая — в Южном полушарии, остров Кергелен в Индийском океане.

С острова Кергелен на геофизической ракете подняли небольшой ускоритель частиц — электронную пушку, которая на определенной высоте выбросила поток электронов. Распространяясь вдоль магнитной силовой линии, электроны попали в Северное полушарие. Поскольку силовая линия располагалась на высоте 20 000 км, полярное сияние было действительно мощным. Искусственные полярные сияния позволяют ученым изучать магнитосферу Земли. Иногда в ионосферу выпускают ионы бария с целью изучения атмосферы планеты, а также для выявления погодных изменений. Примерно через 35 секунд, после попадания в облака ионы бария возбуждаются в солнечных лучах и создают яркое малиновое свечение.

Град

Всемирная метеорологическая организация (ВМО) в 1956 году дала определение града: «Град — это осадки в виде сферических частиц или кусочков льда (градины) диаметром от 5 до 50 мм, иногда больше, выпадающие изолированно или же в виде неправильных комплексов. Градины состоят только из прозрачного льда или ряда его слоев толщиной не менее 1 мм, чередующихся с полупрозрачными слоями. Выпадение града наблюдается обычно при сильных грозах».

Но как образуется град? Явление градообразования исследовал кандидат географических наук М. Софер. Поднимающийся от земной поверхности в жаркий летний день теплый воздух охлаждается с высотой, а содержащаяся в нем влага конденсируется, образуется облако. Переохлажденные капли в облаках встречаются даже при температуре — 40 °C (высота примерно 8—10 км). Но эти капли очень нестабильны. Поднятые с земной поверхности мельчайшие частицы песка, соли, продукты сгорания и даже бактерии при столкновении с переохлажденными каплями нарушают хрупкий баланс. Переохлажденные капли, вступившие в контакт с твердыми частицами, превращаются в ледяной зародыш градины.

Мелкие градины существуют в верхней половине почти каждого кучево-дождевого облака, но чаще всего такие градины при приближении к земной поверхности тают. Так, если скорость восходящих потоков в кучево-дождевом облаке достигает 40 км/ч, то они не в силах удержать зародившиеся градины, поэтому, проходя сквозь теплый слой воздуха на высоте от 2,4 до 3,6 км, они выпадают из облака в виде мелкого «мягкого» града либо и вовсе в виде дождя. В противном случае восходящие потоки воздуха поднимают мелкие градины до слоев воздуха с температурой от — 10 °C до — 40 °C (высота между 3 и 9 км), диаметр градин начинает расти, достигая порой нескольких сантиметров. Стоит отметить, что в исключительных случаях скорость восходящих и нисходящих потоков в облаке может достигать 300 км/ч! А чем выше скорость восходящих потоков в кучево-дождевом облаке, тем крупнее град.

Для образования градины размером с шар для гольфа потребуется более 10 миллиардов переохлажденных капель воды, а сама градина должна оставаться в облаке как минимум 5—10 минут, чтобы достичь столь крупного размера. Надо заметить, что на формирование одной капли дождя необходим примерно миллион таких мелких переохлажденных капель. Градины диаметром более 5 см встречаются в суперячейковых кучево-дождевых облаках, в которых наблюдаются очень мощные восходящие воздушные потоки. Именно суперячейковые грозы порождают смерчи-торнадо, сильные ливни и интенсивные шквалы. В последнее время суперячейковые кучево-дождевые облака в средних широтах европейского континента отмечались в ночь с 20 на 21 июня 1998 года, а также 30 июля 2004 года, когда из-за обильного ливня произошли значительные подтопления на многих территориях.

Когда градина достигает такой массы, что восходящий поток не в силах ее удержать, она устремляется к поверхности Земли, и мы наблюдаем выпадение крупного града. Так, скорость падения градины диаметром 4 см может достигать 100 км/ч, а более крупные градины устремляются к Земле со скоростью 160 км/ч. Нетрудно догадаться, какие разрушения могут причинять градобития. Но и не каждая крупная градина достигнет земли: падая в облаке, градины сталкиваются друг с другом, при этом разрушаясь и превращаясь в более мелкие градины, тающие в теплом воздухе. В среднем 40–70 % образовавшихся градин так и не достигают поверхности Земли.

Площадь зоны градобитий может меняться от одного гектара до нескольких десятков километров. Очень часто приходится слышать о том, что град выпал в одном пункте, а всего в километре от него ничего подобного не было.

При наблюдении града, аккуратно разрезав градину, вы заметите, что матовые слои льда будут чередоваться в виде колец со слоями прозрачного льда. По количеству таких колец вы самостоятельно можете определить, сколько же раз градина была поднята вверх восходящими потоками воздуха.

В 1593 году «…в воскресенье одиннадцатого дня июня месяца, в день Святой Троицы, к семи часам вечера случилась такая сильная гроза с громом, молнией, дождем и градом, о которой до тех пор люди не слыхали. Некоторые градины… весили от 18 до 20 фунтов каждая. В результате этого был нанесен большой ущерб посевам и разрушено много церквей, замков, домов и других сооружений. Виноградники не

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату