аминокислоты с одной преимущественной поляризацией могут быть занесены в различные планетные системы, а значит, вероятность найти жизнь вне Земли растет.
Однако подлинная проверка этой теории станет возможной, когда в руки ученых попадут образцы материала кометы Чурюмова — Герасименко. Они будут собраны зондом «Rosetta» Европейского космического агентства, который в 2014 году совершит мягкую посадку на поверхность кометы. Майергенрих сконструировал инструмент для посадочного модуля, который произведет измерение «ориентации» аминокислот вещества кометы, если они будут там найдены. «Если нам удастся обнаружить левосторонние аминокислоты в веществе поверхности кометы, — полагает ученый, — это подтвердит гипотезу о том, что строительные блоки белков образовались в космическом пространстве и были занесены на Землю посредством упавших на ее поверхность комет и микрометеоритов».
Гипотезой о внеземном происхождении жизни является теория
При изучении вещества метеоритов (главным образом хондритов) и комет были обнаружены спирты, карбониловые соединения, вода, синильная кислота, формальдегиды и т. д. Большая часть молекул, обнаруженных в межзвездных облаках, относится к простейшим соединениям углерода, в том числе к аминокислотам. Предшественники аминокислот в 1975 году были найдены и в лунном грунте. Поскольку метеориты типа углистого хондрита довольно часто падают на Землю из космоса, можно предположить, что образование органических соединений в космосе — событие, скорее, типичное и довольно распространенное.
Несмотря на то что о существовании жизни вне Солнечной системы сказать однозначно и определенно пока достаточно сложно, существует гипотеза о возникновении жизни на Земле практически одновременно с моментом образования самой Земли — около 4,6 млрд лет тому назад. И тогда условно можно считать, что жизнь зародилась в момент создания Солнечной системы, в том числе и Земли, т. е. в космосе.
Любители экстравагантных доказательств этой теории черпают свои аргументы в подтверждениях прилетов инопланетян на Землю, НЛО, в наскальных, топологических рисунках на поверхности Земли и т. д. Следует заметить, что подобная гипотеза не дает ответа на вопрос о механизме изначального возникновения жизни, а просто переносит эту проблему в другое место во Вселенной.
С началом космической эры человечество поставило задачу освоения сверхдальнего космоса. И не последнее место в этой задаче играл поиск внеземных цивилизаций. Многие космические миссии сопровождались передачей сведений о нас, землянах, и нашей планете.
К самым первым интереснейшим полетам в дальний космос можно отнести полет космических аппаратов (КА) «Пионер-10» и «Пионер-11». В те, теперь уже далекие, 70-е годы XX века никакого компьютера на борту не предусматривалось. В принципе, бортовые ЭВМ к моменту создания аппарата «Пионер-10» уже существовали, но они были еще слишком велики и тяжелы. Отсутствие компьютера автоматически означало необходимость передавать с Земли большое количество команд, и в основном в реальном времени. Если, конечно, считать таковым 45 минут «туда» и 45 — «обратно» при радиообмене с Юпитером.
Радиосистема КА включала помимо трех антенн два передатчика. По командной радиолинии со скоростью 1 бит/с (!) можно было передать 222 разные команды, из них 149 — для управления системами КА и 73 — для управления научной аппаратурой. Два декодера и блок распределения команд определяли достоверность каждой команды и ее адресата. Так как команда состояла из 22 бит, на ее прием на борту требовалось 22 секунды. Поэтому аппарат имел и программную память — на пять команд (!), которые могли быть выполнены друг за другом с заданными временными интервалами. Вот с такими средствами НАСА отправлялось штурмовать Юпитер…
Чтобы обеспечить заданную продолжительность работы КА — 21 месяц, разработчики максимально упростили борт за счет усложнения наземной части. Главные компоненты задублировали, остальные ставили на борт только при наличии опыта использования в космосе. Из 150 предложений, полученных в конце 1960-х годов, в 1970 году для установки на КА были выбраны такие научные инструменты: гелиевый векторный магнитометр, анализатор плазмы, прибор для регистрации заряженных частиц, 4 датчика, телескоп космических лучей, гейгеровский телескоп, детектор электронов и протонов радиационных поясов, детектор метеороидных частиц, 4 телескопа, детектор астероидных и метеороидных частиц, датчики пыли, УФ-фотометр, ИК-радиометр; видовой фотополяриметр.
Запуск КА «Пионер-10» состоялся 2 марта 1972 года. 25 мая станция вышла за орбиту Марса и 16 июля пересекла условную границу пояса астероидов в 1,8 ае от Солнца. Вероятность его успешного прохождения оценивалась в 90 %. Никаких попутных съемок не планировали, чтобы не добавлять ненужного риска, а потому «Пионер-10» прошел от ближайшего известного астероида в 8,8 млн км.
Первой на пути встретилась безымянная планетка диаметром 1 км — это произошло уже 2 августа. Вторым был довольно крупный (24 км) астероид Нике — станция миновала его 2 декабря.
15 февраля 1973 года на расстоянии 3,7 ае от Солнца «Пионер-10» вышел из пояса астероидов неповрежденным. Увеличение концентрации астероидных частиц было замечено лишь однажды — в течение недели на отметке 2,7 ае от Солнца, а в среднем их количество оказалось намного меньше ожидаемого: если за март — июнь 1972 года в датчики КА попала 41 пылевая частица, то за июнь — октябрь — 42. «Пионер-10» доказал, что пояс астероидов практической опасности не представляет.
6 ноября с расстояния 25 млн км начались опытные съемки Юпитера, а 8 ноября станция пересекла орбиту Синопе, самого далекого спутника планеты. Начался 60-суточный период пролета, за время которого на борт было передано около 16000 команд.
Чтобы обезопасить аппарат от выполнения случайных команд, вызванных радиацией вблизи Юпитера, на борт раз в несколько минут отправлялась «лечебная» посылка. Кроме того, специальная командная последовательность немедленно восстанавливала работу фотополяриметра в случае сбоя. Такие сбои начались на расстоянии в 9 радиусов планеты и произошли 10 раз. Были потеряны несколько близких планов Юпитера и единственный запланированный кадр Ио. Не будь этого сбоя, вулканы Ио могли быть обнаружены на семь лет раньше!
В гравитационном поле Юпитера станция получила скорость, достаточную для ухода из Солнечной си с-темы. В результате в феврале 1976 года «Пионер-10» пересек орбиту Сатурна, 11 июля 1979-го — орбиту Урана и 13 июня 1983-го — орбиту Нептуна в 30,28 ае от Солнца, все еще имея скорость 13,66 км/с.
За следующие 20 лет аппарат ушел еще на 50 ае, продолжая измерения космических лучей и солнечного ветра в той области, что сейчас известна как пояс Койпера. Гелиопаузы — предела безраздельного влияния Солнца и подлинной границы Солнечной системы — он так и не достиг.
31 марта 1997 года научная программа миссии была официально прекращена, однако сеансы связи было разрешено продолжать «для тренировки персонала проекта
Однако теперь связь прекращена окончательно не в силу административного решения, а из-за потери технической возможности. Станция уходит из Солнечной системы в общем направлении на Альдебаран, но для того чтобы пройти 68 световых лет до этой звезды, ей потребуется более 2 млн лет. На борту она несет позолоченную пластину размером 152 х 228 мм, на которой простыми рисунками рассказано о том, как выглядят люди и где находится планета, запустившая этот аппарат.
Идея этого послания принадлежала известному популяризатору ракетной техники Эрику Бургессу, Ричарду Хоагланду (который потом нашел «Сфинкса» на Марсе) и Дону Бейну. Карл Саган вместе с Фрэнком Дрейком набросали идею «картинки», а супруга Сагана Линда ее нарисовала.
Телеметрические данные, поступающие с «Пионера-10», «Пионера-11» и «Галилео», а также данные наземной сети для наблюдения далекого космоса (Deep Space Network — DSN), принадлежащей Лаборатории реактивного движения НАСА (Пасадена, США), позволили коллективу американских специалистов установить наличие аномального ускорения в движении этих космических аппаратов. Помимо обычного ускорения, вызванного притяжением Солнца и спадающего обратно пропорционально квадрату