Первый каскад усиления реализован на транзисторе VT1. Этот полупроводниковый кремниевый прибор должен обладать высоким коэффициентом передачи тока h21e — от этого зависит чувствительность узла. Усилитель на транзисторах VT2 и VT3 построен по принципу усиления постоянного тока. Резкий шум, тряска, хлопок или микровоздействие по капсюлю BМ1 немедленно отразится изменением напряжения на коллекторе транзисторов VT2 и VT3. Рабочий режим транзистора VT2 (смещение) задается делителем напряжения на резисторах R3 и R4. Сопротивления резисторов делителя напряжения выбрано таким, чтобы постоянное напряжение на коллекторах VT2, VT3 в режиме ожидания находилось в пределах 2,4–2,5 В.
Оксидный конденсатор С2 не пропускает постоянную составляющую напряжения на вход транзисторного усилителя.
Чувствительность узла такова, что устройство реагирует на шум резкого характера (например, хлопок) на расстоянии 4…6 м.
2.8.1. Налаживание
Устройство в налаживании не нуждается. Смонтированное без ошибок с исправными деталями устройство надежно работает в круглосуточном режиме.
Печатная плата не разрабатывалась. Элементы устройства компактно крепятся на макетной плате, их выводы соединяются перемычками из провода МГТФ-0,6. Подключения к источнику питания и к коммутируемым цепям устройств периферии удобно выполнить с помощью электромонтажного
Ток, потребляемый в режиме ожидания, — 0,5 мА.
2.8.2. О деталях
Все постоянные резисторы типа МЛТ-0,25. Конденсатор С2 типа КМ-6, группы ТКЕ H70 или аналогичный. Пьезоэлектрический капсюль ВМ1 можно заменить на ЗП-1, ЗП-18, ЗП-22 или другой аналогичный. Для этой цели хорошо подходит пьезоэлектрический капсюль из электронных часов в корпусе типа «пейджер».
Конденсатор С3 (типа К50-24) сглаживает пульсации от источника питания. Источник питания — стабилизированный с напряжением 6…11 В. При эксплуатации устройства замечено, что чувствительность узла (при прочих равных условиях) увеличивается с уменьшением напряжения питания, а при увеличении напряжения питания свыше 11 В устройство переходит в режим самовозбуждения.
Все постоянные резисторы типа МЛТ-0,25. Провода к микрофону ВМ1 не экранируют. Они имеют длину не более 20 см.
Устройство эффективно и как отдельный самостоятельный электронный узел — чувствительный датчик. В этом случае вместо резистора R5 включают электромагнитное реле с током срабатывания 20– 30 мА, а его коммутирующие контакты подключают к соответствующей нагрузке.
Кремниевые транзисторы VT2, VT3 могут быть любыми из серии КТ3107, КТ502, C557. Заменять их на германиевые нежелательно из-за большого тока покоя последних. Транзистор VT1 заменяют КТ342А — КТ342В, КТ3102А— КТ3102Е, КТ373А — КТ373В. Реле можно использовать КМ85-2011-35-1012, BV2091 SRUH-SH-112DM, TRU-9VDC-SB-SL и аналогичные. Все указанные типы реле рассчитаны на работу в цепи коммутации нагрузки до 250 В и током коммутации до 3 А. В качестве реле можно применить и отечественные элементы, например РЭС-10, РЭС-15 и аналогичные, однако они рассчитаны на работу в цепях коммутации не более 150 В, а кроме того, отечественные реле по сравнению с зарубежными обходятся дороже на один…два порядка.
В авторском варианте устройство используется в качестве составной части охранного сигнализационного комплекса.
Глава 3
Датчики и индикаторы
3.1. Электронные часы на ЖКИ
В современной электронной технике используется, в основном, только три типа индикаторов: светодиоды, вакуумные электролюминесцентные лампы и жидкокристаллические индикаторы (сокращенно — ЖКИ). Наибольшее распространение получили ЖКИ, что неудивительно: по сравнению с остальными типами индикаторов, они почти идеальны по электрическим характеристикам.
Светодиодные индикаторы имеют низкое напряжение питания (1,5…3,5 В), что удобно, однако их потребляемый ток довольно велик (2…20 мА), и это практически «ставит крест» на их использовании в современной микромощной радиоэлектронной аппаратуре.
У всех электронных ламп есть нить накала, потребляющая значительный ток (десятки миллиампер при напряжении единиц вольт, к тому же для управления ими нужно довольно высокое напряжение (12…18 В). И только ЖКИ при рабочем напряжении 3…5 В потребляют малые токи в доли микроампера.
Управляются они переменным напряжением, но для современной техники это — не проблема. В отличие от всех остальных индикаторов, ЖКИ практически не чувствительны к электрическим перегрузкам. И еще одна особенность: если светодиоды и ламповые индикаторы излучают свет, то ЖКИ наоборот поглощают. В итоге при ярком свете разобрать информацию на первых двух типах индикаторов очень сложно — свет «забивает» их неяркое свечение; ЖКИ в таких случаях читаются идеально (имеются в виду монохромные ЖКИ). В темноте ЖКИ не видны, но это легко исправить, добавив подсветку — хотя бы на светодиодах или лампах накаливания.
3.1.1. Электрическая схема электронных часов на ЖКИ
Жидкокристаллический индикатор представляет собой две плоские пластинки из стекла, склеенные по периметру таким образом, чтобы между стеклами оставался промежуток, его заполняют специальными жидкими кристаллами.
На обеих пластинах специальным веществом, которое прозрачно и проводит электрический ток, нарисованы собственно сегменты индикатора. Обычно одна из пластинок выполняет роль общего провода.
Жидкокристаллические индикаторы работают с поляризованным светом — для этого с обеих сторон индикатора наклеены специальные пленочные поляризаторы. В зависимости от взаимного расположения поляризаторов, ЖКИ может быть