момент времени или в данной точке траектории в механике называют мгновенной скоростью.[6]. И если при равномерном движении мгновенная скорость постоянна по величине (и совпадает со средней скоростью), то при неравномерном движении мгновенная скорость тела непрерывно изменяется.

Ускорение. В том случае, если мгновенная скорость за любые равные промежутки времени изменяется одинаково, движение называют равноускоренным. А величину, равную отношению изменения скорости тела к промежутку времени, в течение которого это изменение произошло, называют ускорением.

При подтягивании на перекладине скорость тела на различных участках траектории за равные промежутки времени может изменяться неодинаково. Это означает, что и ускорения на различных участках траектории будут различны. К тому же на одном и том же участке траектории, но в разных циклах подтягивания, скорость изменения скорости - так еще называют ускорение - также различна. Скорость точек в различных движениях человека может изменяться, увеличиваясь, уменьшаясь или меняя направление. Поэтому и ускорения различают соответственно положительное (при увеличении скорости), отрицательное (при уменьшении скорости) и нормальное, или центростремительное (при изменении только направления скорости) [7].

Рассуждения о скоростях и ускорениях могли бы остаться чисто формальными, приведёнными просто для создания полноты картины, если бы скорость движения тела спортсмена при подтягивании ни на что не влияла. Но это далеко не так. Скорость движения тела спортсмена в фазе подъёма туловища, особенно на участке разгона, оказывает значительное влияние на результат в подтягивании.

Разгон тела на начальном участке фазы подъёма туловища связан с затратами дополнительной энергии, величина которой пропорциональна квадрату набранной скорости, т.е. если скорость подъёма туловища увеличить в 2 раза, энергозатраты на участке разгона возрастут при этом в 4 раза. И хотя с точки зрения механики кинетическая энергия движущегося тела на верхнем участке траектории движения спортсмена без потерь преобразуется в энергию потенциальную, с точки зрения физиологии дополнительная метаболическая энергия к этому моменту уже потрачена и ни во что преобразоваться не может. Поэтому, затратив на разгон тела, например, до двойной скорости в четыре раза больше энергии за то же время, т.е. произведя работу в четыре раза большей мощности, спортсмен вынужден пополнять её запасы в фазе виса в ИП. Но на восстановление потраченной энергии потребуется гораздо больше времени, чем на её «сжигание». Выделение энергии происходит в вынужденном режиме – организм стремится любой ценой обеспечить выполнение предъявленной нагрузки. Восстановление же, образно говоря, идёт как бы в плановом порядке – не спеша и с учётом имеющихся возможностей. Поэтому отдых, необходимый для ресинтеза энергетических субстратов, оказывается намного длительнее, чем выигрыш по времени, полученный в результате увеличения скорости подъёма. Кроме того, при увеличении скорости подъёма изменяется режим энергообеспечения так, что увеличивается доля неэкономичной анаэробной работы. Если же паузы отдыха не будут увеличены и подтягивание будет продолжаться в высоком темпе, недовосстановление будет усугубляться и через некоторое время спортсмен будет вынужден резко снизить темп подтягиваний, что мы и наблюдаем у спортсменов, для которых характерно быстрое начало со взлётами над грифом перекладины по самую грудь. Выполнив за первую минуту 22-25 подтягиваний, спортсмены затем резко останавливаются, увеличивая паузы отдыха до 10-15 секунд, оказываясь перед необходимостью ликвидировать негативные последствия нерационального подтягивания. Но уже поздно.

Уменьшение скорости подъёма сопровождается увеличением длительности статического напряжения мышц, выполняющих подъём туловища. Статическое напряжение при «скользящем» висе на согнутых руках также сопровождается повышенным расходом метаболической энергии, и хотя с физической точки зрения при статическом напряжении мышц механическая работа не производится, физиологическая стоимость такого напряжения пропорциональна времени поддержания статических усилий.

Рисунок 1.13 Зависимость суммарных энергозатрат от скорости подъёма туловища

на участке разгона

Таким образом, как увеличение скорости подъёма, так и её снижение сопровождается повышенным расходом энергии. Следовательно, должна существовать такая скорость, при которой энергозатраты спортсмена в фазе подъёма туловища будут минимальны. Эту скорость будем называть оптимальной.

Поскольку энергозатраты в фазе подъёма туловища пропорциональны квадрату скорости, а энергозатраты мышц, развивающих статическое напряжение обратно пропорциональны скорости, зависимость суммарных энергозатрат от скорости должна иметь минимум в точке, соответствующей оптимальной скорости. Для наглядности взаимосвязь энергозатрат при совместном действии статического напряжения и динамического сокращения мышц в фазе подъёма туловища отражена на графике рисунка 1.13. Очевидно, что оптимальную скорость движения каждый спортсмен должен подобрать самостоятельно на тренировках по субъективным ощущениям.

1.2.2 Динамические характеристики подтягивания.

К основным динамическим характеристикам относятся сила и масса. Сила в механике – это мера взаимодействия тел. Масса – это с одной стороны количество материи, содержащейся в теле, а с другой – мера инертности тела. В движениях человека силы, приложенные к массам частей, тела обусловливают движения этих частей тела [21].

Силы, влияющие на движение человека, делятся на внешние и внутренние. Внешними силами для человека служат силы, приложенные к телу извне. Для подтягивания на перекладине к числу внешних сил относятся сила тяжести (вес) собственного тела, сила упругости перекладины, сила трения между грифом и ладонями, а также внешние отягощения и сопротивления. Каждая из этих сил характеризуется величиной, направлением, точкой приложения.

Внутренними силами для тела человека служат силы, возникающие внутри тела при взаимодействии его частей. Для подтягивания на перекладине значение имеют такие внутренние силы, как пассивные силы опорно-двигательного аппарата, силы инерции частей тела, силы тяги мышц.

1.2.2.1 Двигательный аппарат человека.

Двигательный аппарат человека можно представить как самодвижущий­ся рычажный механизм, состоящий примерно из 600 мышц, 200 костей, нескольких сотен сухожилий. Кости и их соединения (суставы, связки и пр.) составляют скелет, являющийся твердой опорой тела человека.

Двигательный аппарат обычно разделяют на звенья, называя звеном часть тела, расположенную между двумя соседними суставами или между суставом и дистальным (более удаленным от туловища) концом. Так, звеньями тела являются кисть, предплечье, голова и т.д. [3].

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату