release_mem_region(MEM_START, MEM_QTY);

  release_region(PORT_START, PQRT_QTY);

  return -EBUSY;

 }

 printk('My module: IRQ allocated ');

 return 0;

}

void cleanup_module() {

 // Освобождаем порты ввода-вывода

 release_region(PORT_START, PORT_QTY);

 printk('My module; release io ports ');

 // Освобождаем память

 release_mem_region(MEM_START, MEM_QTY);

 printk('My module: release memory ');

 // Освобождаем прерывание

 free_irq(IRQ_NUM, NULL);

 printk('My module: release irq ');

 // Отменяем регистрацию устройства

 if (unregister_chrdev(Major, DEV_NAME) < 0){

  printk('My module: cannot to unregister device ');

 }

 printk('My module: device unregistered ');

 return;

}

При загрузке модуля вы увидите следующее сообщение:

My module: device registered, major number = 255

Конечно, кроме этого сообщения будут и другие, но нас они не интересуют. Почему именно это сообщение так важно для нас? В первой части сообщения говорится, что наше устройство успешно зарегистрировано, а во второй сообщается старший номер устройства, который мы будем использовать для создания устройств /dev/device0 и /dev/device1.

Вы не забыли, что нам еще нужно создать два устройства типа device, чтобы программы могли работать с ними? Перейдите в каталог /dev и от имени суперпользователя выполните команды:

# mknod device с 255 0

# mknod device с 255 1

Здесь 255 — это старший номер устройства (у вас он будет другим), 0 и 1 — младшие номера устройств. После выполнения данных команд будут созданы два файла устройств — /dev/device0 и /dev/device1.

После регистрации устройства функцией register_chrdev() мы пытаемся захватить диапазон портов. Для этого предназначена функция request_region(), но перед ее вызовом мы должны убедиться, что нужный нам диапазон не используется (функция check_region()). Затем, если нужно, мы резервируем память для нашего устройства. Для резервирования памяти используется функция request_mem_region(), а для проверки возможности захвата памяти предназначена функция check_mem_region(). После успешной регистрации памяти можно попытаться захватить IRQ — функция request_irq().

Предположим, что на каком-то этапе регистрации модуля произошла ошибка. Если мы не смогли зарегистрировать порты ввода/вывода, вряд ли имеет смысл продолжать работу. Если же ошибка произошла при резервировании памяти, то перед завершением работы модуля нам нужно освободить порты ввода/вывода, которые мы зарегистрировали на предыдущем этапе. Аналогично поступаем при ошибке захвата IRQ — освобождаем порты и память. Функции release_mem_region(), release_region() и free_irq() используются для освобождения памяти, портов и IRQ соответственно.

Обратите внимание: мы написали драйвер так, что он захватывает порты и память от имени одного устройства — DEV_NAME. В реальности все гораздо сложнее: нужно захватывать ресурсы для каждого устройства данного типа. К тому же придется предусмотреть поиск устройств модулем: в нашем случае мы знаем, что устройств только два, но у конечного пользователя таких устройств может быть больше или меньше, поэтому наш модуль не будет универсален, если он будет поддерживать только два устройства.

28.4. Операции над устройством. Поиск устройств

Наш модуль пока еще не может называться «драйвером» в прямом смысле этого слова: устройство-то он регистрирует, но не позволяет выполнить ни одной операции с ним — ведь структура file_operations пуста.

Кроме структуры file_operations нам еще понадобится структура для хранения информации о состоянии устройства, а так как устройств у нас два, то нужен также массив структур для хранения состояния каждого устройства. Индексами массива будут младшие номера устройств.

// Структура для хранения состояния устройства

struct device_state {

 int dev_open; // 1 - устройство открыто, 0 - закрыто

 ssize_t byte_read; // Количество прочитанных

                    // из устройства байтов

 ssize_t byte_write; // Количество записанных байтов

};

// Массив для хранения информации о состоянии устройств

static struct device_state state[2];

В принципе, можно обойтись и без кода поиска устройств — без него модуль будет проще (а значит, надежнее), да и работать он будет быстрее. Обойти поиск устройств можно следующим образом. Мы не знаем, сколько устройств типа device будет у конечного пользователя. Поэтому вместо массива state (он будет описан ниже) нужно использовать динамический список, который будет содержать информацию о каждом устройстве типа device. При загрузке модуля список будет содержать всего один элемент — для устройства /dev/device0. Если устройств этого типа в системе нет вообще, будем просто считать, что устройство device0 закрыто, а при попытке обращения к нему будем сообщать, что оно занято. По мере поступления запросов программ на открытие других устройств /dev/deviceX будем добавлять в наш список новые элементы.

Если же вам все-таки хочется узнать конкретное количество устройств /dev/deviceX, установленных у пользователя, можно просто просмотреть содержимое каталога /dev и посчитать количество файлов device*.

Все готово для того, чтобы написать функцию открытия устройства.

Листинг 28.7. Функция открытия устройства

static int device_open(struct inode *inode, struct file *fp) {

 struct device_state *dev_state;

 printk('My module: try to open device with minor number %d ',

  MINOR(inode->i_rdev));

 devastate = &state[MINOR(inode->i_rdev)];

 if (dev_state->dev_open) {

  printk('Devise is busy ');

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату