отдельных молекул.

В одном из таких опытов английский химик Нейл Кенсингтон Адам (1891–1973) наблюдал в 1922 году образование на поверхности воды пленок пальмитинового спирта. Оказалось, что очень маленькое количество пальмитинового спирта — всего 0,052 мг дает пленку площадью 193 см2. Так как плотность спирта равна 0,818 г/см3, то объем пленки составляет 6,36 x 10-5 см3, при толщине всего лишь 6,36 x 10-5 см3 / 193 см2 = 3,3 x 10-7 см, или 3,3 нм. Значит, молекула пальмитинового спирта по длине примерно в 10 раз больше молекул кислорода.

Размеры порядка 1 нм имеют большинство молекул и ионов знакомых нам веществ. Так, диаметр молекул водорода равен примерно 0,2 нм, иода — 0,5 нм, этилового спирта — 0,4 нм; радиус ионов алюминия — 0,06 нм, натрия — 0,10 нм, калия — 0,13 нм, хлора — 0,18 нм, иода — 0,22 нм. Но есть среди молекул и гиганты, размеры которых, по молекулярным меркам, поистине астрономические. Так, в ядрах клеток высших животных и растений находятся молекулы наследственности — дезоксирибонуклеиновые кислоты (ДНК). Их длина может превышать 2 000 000 нм, т. е. 2 мм!

В заключение этого раздела — небольшой рассказ о том, какой остроумный (хотя и не самый точный) метод использовал в 1908 году французский ученый Жан Перрен, чтобы «взвесить» молекулы. Как известно, плотность воздуха уменьшается с высотой. Еще в начале XIX века французский ученый Пьер Лаплас вывел формулу, позволяющую рассчитать давление на разных высотах. В соответствии с этой формулой атмосферное давление падает вдвое при подъеме на каждые 6 км. Это значение зависит, конечно, от силы земного притяжения, а также от массы молекул воздуха. Если бы воздух состоял не из азота и кислорода, а из очень легких молекул водорода (они в 16 раз легче молекул кислорода), то падение атмосферного давления вдвое наблюдалось бы на высоте не 6 км, а примерно в 16 раз больше, т. е. около 100 км. И наоборот, если бы молекулы были очень тяжелые, атмосфера была бы «прижата» к поверхности Земли и давление быстро падало бы с высотой.

Рассуждая таким образом, Перрен решил вместо молекул использовать крошечные шарики краски гуммигута, взвешенные в воде. Он постарался приготовить взвесь (эмульсию) с одинаковыми по размеру шариками — около 1 мкм в диаметре. Затем он поместил капельку эмульсии под микроскоп и, перемещая винт микроскопа по вертикали, считал число шариков гуммигута на разных высотах. Оказалось, что формула Лапласа вполне применима и к эмульсиям: при подъеме на каждые 6 мкм число шариков в поле зрения уменьшалось в два раза. Поскольку 6 км ровно в миллиард раз больше 6 мкм, Перрен сделал вывод, что во столько же раз молекулы кислорода и азота легче шариков гуммигута (а их массу уже можно определить экспериментально).

ХИМИКИ АНАЛИЗИРУЮТ

Что такое химический анализ и аналитическая химия

Чтобы повторить в лаборатории то, что давно «изобрела» природа, а потом воспроизвести этот синтез на химических предприятиях в промышленном масштабе, необходимо прежде всего знать, из каких элементов построены нужные нам вещества. Этим занимается качественный анализ. Такой анализ всегда считался одной из важнейших задач химии. Он начал интенсивно развиваться в конце XVIП века. С помощью методов качественного анализа французский химик Мишель Эжен Шеврёль (1786–1889) в начале XIX века выяснил, например, из каких элементов состоит дорогой синий краситель индиго, свиной жир и даже… кости динозавра.

Но мало узнать, какие элементы содержатся в веществе. Надо еще выяснить, в каких именно пропорциях они там находятся. Это — тоже задача аналитической химии, того ее раздела, который называется количественным анализом. В течение сотен лет разрабатывались (и продолжают разрабатываться до сих пор) методы качественного и количественного анализа. В результате анализа вещества химик определяет, из чего оно состоит, какие в нем содержатся компоненты, какими атомами и в каких пропорциях они представлены. Современные приборы позволяют найти один-единственный атом примеси среди миллиардов атомов других элементов. Представьте себе несколько миллиардов шариков диаметром 1 см (для их перевозки потребуется целый железнодорожный состав). И среди них нужно обнаружить один шарик, отличающийся от других. Это намного труднее, чем найти иголку в стоге сена.

Анализы проводятся в научных институтах — например, когда требуется узнать состав вновь синтезированного соединения или вещества, выделенного из растительного сырья, а может быть, и вещества лунного грунта, доставленного на Землю космическим аппаратом! Вообще так называемая «космическая аналитика» — сравнительно новая, быстро развивающаяся область аналитической химии. С ее помощью удалось узнать много важного о Луне, планетах, метеоритах, кометах, межпланетном пространстве. С помощью автоматических аналитических приборов произведен анализ атмосферы Венеры, фунтовых пород на Марсе (например, было установлено, что на глубине 30–60 см там находятся большие скопления льда). Обнаружены молекулы органических веществ в космическом пространстве, причем довольно сложные, на основании чего была разработана одна из теорий возникновения жизни на Земле — космическая. Теперь ученые заняты интересной аналитической задачей — попыткой обнаружить на Марсе аминокислоты и нуклеиновые кислоты, которые могли бы свидетельствовать о наличии жизни на этой планете. Ежедневные анализы совершенно необходимы и для жизнеобеспечения обитателей космических кораблей и космических станций длительного функционирования.

Но не только космосом жив человек. Чтобы контролировать состав самых разных изделий, от быстрорежущих сталей до красителей, ежедневно огромное количество анализов проводится в заводских лабораториях. Анализы делают геологи в полевых условиях, чтобы узнать, какие минералы и какие полезные ископаемые им встретились. Таможенники должны проводить анализы на взрывчатые и наркотические вещества, а военные — на присутствие в воздухе боевых отравляющих веществ. Медики- токсикологи должны определять предельно допустимые концентрации вредных веществ в окружающей среде. Еще больше забот в этой сфере у медиков-гигиенистов; кстати, они едва ли не главные при установлении предельно допустимых концентраций вредных веществ. Химики-фармацевты должны анализировать лекарственные препараты, многие из которых представляют собой смесь очень сложных по составу химических соединений. Агрохимики анализируют состояние почвы — ее кислотность, наличие полезных веществ (прежде всего — азота, фосфора и калия). Специальные службы анализируют воду в реках, озерах, на водопроводных станциях, выявляя присутствие вредных для человека и животных веществ. Другие службы проводят анализ воздуха в домах, производственных помещениях, в глубоких шахтах, чтобы выявить, нет ли в воздухе вредных и взрывчатых веществ, например, метана, а если есть, то не опасно ли его содержание (метан взрывается — на кухне или в шахте — если его в воздухе накапливается больше 5 %).

В городах анализируют чистоту воздуха. Например, в Петербурге на здании Института метрологии им. Д. И. Менделеева (здесь раньше была Палата мер и весов, которой многие годы заведовал Д. И. Менделеев) установлено большое световое табло. На нем — привычные для жителей многих городов сведения о состоянии атмосферы на данный момент — температура, атмосферное давление и влажность воздуха. Но есть на этом табло и необычные сведения — о содержании в городском воздухе вредных веществ: угарного и сернистого газов, оксидов азота, озона, аммиака. Эти сведения передаются цветом: зеленым, если содержание данного вещества в воздухе ниже предельно допустимого, желтым — если превышает норму не более чем в три раза, красным — при большем превышении. Конечно, само табло ничего не анализирует — сведения передаются из специальной лаборатории. Проводятся в городах и анализы автомобильных выхлопов на содержание в них вредных газов — угарного и несгоревших паров бензина (так называемый анализ СО — СН).

Многие анализы необходимо проводить без участия человека — с помощью автоматических приборов. Автоматические станции непрерывно проводят анализ атмосферы для контроля состояния окружающей среды, чтобы выявить в воздухе различные вредные вещества (озон, оксиды азота и др.) и

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату