синтезируемых в цитоплазме. Все это вовлекает гены в обмен веществ и подвергает их действию факторов внешней среды. В результате гены, эти блоки генетической информации, претерпевают бесконечные изменения (мутации) на основе преобразования их молекулярного строения».
Открытие материальной природы гена отразило в себе единство органического мира. Молекулы ДНК оказались тем веществом, в котором записана генетическая информация почти всех живых существ на Земле. Хранитель «ключей жизни» и главный «дирижер внутриклеточного оркестра», ДНК заключает в себе код, который любая клетка использует для своего воспроизведения. Человек и насекомое, полевой цветок и бактерия — все они «родственники» по ДНК. Какое яркое и глубокое доказательство единства жизни, общности ее происхождения и взаимообусловленности ее истории!
Ищите волшебников в лаборатории
Рассекретив чудесные свойства ДНК, ученые стали всерьез думать о «сотворении» живых организмов по своему усмотрению. Их увлекла идея целенаправленного вмешательства в святая святых жизни — в процесс ее воспроизводства. Оказалось, что гены можно извлекать из одного организма, пересаживать в другой и наблюдать, что из этого получится. Теперь этим занимается новая наука — генная инженерия. Именно ее первые успехи и ее сказочные перспективы позволяют нам говорить о революции в биологии.
«Я попытался, — говорит академик А. Баев, — наметить те операции и манипуляции, которые составляют предмет генной инженерии и ограничивают область применимости этого термина. Мне кажется, что основных таких задач пять:
1. Выделение гена из природного материала.
2. Синтез гена в лаборатории, что называется, «в пробирке» и затем использование его.
3. Необходимо научиться видоизменять, исправлять, наращивать или укорачивать имеющийся в руках исследователя ген, придавая ему нужную структуру.
4. Полученный тем или иным способом ген нужно заставить размножаться, то есть проявить неотъемлемую черту всего живого — способность самокопироваться.
5. Наконец, ставится задача найти пути введения в клетку нужного гена и присоединения его к генетическому материалу клеточного ядра». Не надо говорить, насколько сложна вся эта работа. Ведь исследователи имеют дело с такими микрообъектами, по сравнению с которыми клетка кажется гигантом. В руках «генного инженера» нет ни скальпелей, ни пинцетов, никакие хирургические инструменты тут не помогут. Их заменяют ферменты.
Полный набор этих «инструментов», к помощи которых прибегают волшебники из биологических лабораторий, имеется в каждой клетке. В частности, «скальпелем» служат ферменты (их называют рестиктразы), охраняющие клетку от инородных генов. Чужая ДНК разрубается рестиктразой, словно саблей, причем разные рестиктразы наносят удары в разных местах, каждая в своем.
Таких ферментов много. Подбирая их, исследователь расщепляет молекулы ДНК на нужные части.
Затем куски хромосом, в которых находятся гены, необходимо снова «сшить». Тут прежде всего помогает их свойство объединяться друг с другом. А затем на помощь привлекается снова фермент — лигаза.
Наконец, остается последний этап генной операции — вновь сконструированную молекулу-гибрид нужно перенести в клетку другого организма. Каким пинцетом это можно сделать? Переносчиками выступают молекулы ДНК вирусов — фаги. Начиненный новой наследственной информацией вирус проникает в бактерию и отдает ей свои гены.
Можно использовать и другого помощника, так называемую плазмиду. Эта кольцевая молекула благодаря малым размерам легко отделяется от основной массы бактериальных ДНК. В нее также можно вшить гены и направить в клетку. Чудо-операция завершена…
На этом, однако, не оканчиваются заботы о созданном гибриде. Внедренный в клетку ген нужно заставить там работать. Дело в том, что в хромосомах всегда имеется большое число «молчащих» генов. Что, если и внедренные гены окажутся в их компании? Значит, надо научиться управлять геном — включать и выключать его по мере необходимости.
Тут же подчеркнем: вживление чужеродных генов в другие организмы не приводит, как можно подумать, к созданию новых форм живого. Это — задача будущего. Пока речь идет о создании в лабораториях ученых новых комбинаций генов в ДНК и выяснении, что могут дать такие образования.
А насколько неожиданными могут быть тут результаты, судите хотя бы по такому примеру. Исследователи осуществили слияние клеток человека с клетками мыши, цыпленка и даже… комара (конечно, здесь нечего ждать какого-то фантастического гибрида — ведь объединяются не половые клетки).
Очевидно, что произвольные объединения разнородных генов могут привести к образованию молекул ДНК с непредсказуемыми свойствами. Уже сейчас возможны самые необычные комбинации генов вплоть до сочетания генов многоклеточных животных и бактерий… Освоенная в последние годы техника введения генов бактериям уже в ближайшей перспективе может получить важное практическое применение. Скажем, можно выделить ген, закодированный на производство инсулина, и ввести его в бактерию. Подобные бактерии превратятся в настоящие фабрики по производству инсулина. Других бактерий можно «настроить» на производство антибиотиков и так далее.
Такие возможности открывают перед наукой операции по пересадке генов. Столь же замечательны успехи молекулярных биологов по созданию искусственных генов. Индийский ученый Кхорана всеете с небольшой группой исследователей создал «в пробирке» первый синтетический ген. Ему удалось получить часть молекулы ДНК которая управляет конкретным биохимическим процессом — образованием одной из нуклеиновых кислот.
И еще одно направление успешных поисков — синтез гена, в котором записана информация о строении белка крови — глобулина.
Выделен учеными и ген в чистом виде. Из молекулы ДНК.
Теперь многие ученые говорят уже о широких экспериментах с генами человека. Но прежде им нужно научиться узнавать тот ген, с которым они хотят работать, из десятков тысяч различных генов, которыми обладает каждый из нас.
До недавнего времени это казалось сложнее, чем развязать гордиев узел. Но сейчас появился просвет — разработан метод, названный клеточным слиянием, помогающий ученым продираться сквозь генетические джунгли.
Размножение под копирку
Мы уже говорили: каждая клетка в организме обладает полным набором генов, и этот набор индивидуален у разных существ. Половые клетки, участвующие в продолжении рода, в этом отношении не отличаются от других. Разница только в том, что в обычных клетках содержится весь комплекс хромосом, а в половых — половинный. Полный комплекс получается при слиянии мужской и женской клетки, то есть при оплодотворении. А нельзя ли включать в процесс оплодотворения и обычные, или, как их называют, соматические клетки?
Экспериментаторы проверили это на лягушках. Они извлекали из клетки кишечника лягушки ядро и пересаживали в оплодотворенное яйцо другой особи. При этом материнские гены в яйце оыли выведены из с. рил облучением. Икринка развивалась нормально и превратилась в лягушку. Она оказалась точной копией той, у которой было взято клеточное ядро.
Этот по описанию как будто несложный опыт на самом деле потребовал от экспериментаторов больших ухищрений. Речь ведь шла о прямой пересадке ядра клетки, а велико ли оно?! Только в одном