всей оси слева направо мяч остановился. При этом наше орудие — второй мяч, который мы поначалу тоже будем неоднократно катать по столу тем же самым образом, что и первый. С каждым разом специально поставленный для этого человек будет записывать, где именно, справа или слева от первого мяча, остановился второй мяч. В конце человек сообщит нам общее количество попыток, во время которых второй мяч останавливался в каждом из двух основных направлений. Первый мяч представляет собой то неизвестное, о чем мы хотели узнать, второй мяч представляет собой свидетельства, которые нам удалось собрать. Если второй мяч будет раз за разом останавливаться справа от первого мяча, можно быть в достаточной степени уверенным, что первый мяч останавливается в дальнем левом углу стола. Если он останавливается — не так последовательно, раз за разом — мы будем в меньшей степени уверенными в своем выводе или же предположим, что первый мяч находится в дальнем правом углу. Байес продемонстрировал, как, опираясь на сведения о втором мяче, определять точную вероятность того, что первый мяч находится в любой данной точке рядом с осью слева направо. И продемонстрировал, как при наличии дополнительных сведений можно пересмотреть первоначальные подсчеты. Согласно терминологии Байеса, первоначальные подсчеты называются априорной вероятностью, а новые предположения — апостериорной вероятностью.

Байес затеял эту игру по той простой причине, что она моделирует многие решения, которые мы принимаем в жизни. В примере с испытаниями лекарства положение первого мяча представляет собой истинную эффективность лекарства, а то, что говорится о втором мяче, представляет собой информацию о пациенте. Положение первого мяча может также обозначать интерес к фильму, качество изделия, умение водить машину, усердную работу, упрямство, талант, способность — да что угодно, что определяет успех либо неудачу того или иного предприятия. Сообщения о втором мяче в таком случае обозначали бы наши наблюдения либо полученные нами данные. Теория Байеса демонстрирует, как производить оценку и согласовывать ее при наличии новой информации.

В наше время байесовский анализ широко применяется и в науке, и на производстве. К примеру, в модели, с помощью которых рассчитываются страховые тарифы для автомобилей, заложена математическая функция, описывающая в единицах времени за рулем вероятность для вас лично попасть в аварию однажды, не один раз, ни одного раза. В нашем случае достаточно рассмотреть упрощенную модель, согласно которой все водители распределяются на две категории: высокого риска, к которой относятся водители, в среднем попадающие в одну аварию в год, и малого риска, к которой относятся водители, в среднем попадающие в менее чем одну аварию в год. Допустим, в момент обращения за страховкой вы предоставляете данные, согласно которым проездили без единой аварии аж двадцать лет, либо предоставляете данные, согласно которым за двадцать лет побывали в тридцати семи авариях. Страховая компания четко определит для себя, к какой категории вас отнести. Однако если вы сели за руль недавно, к какой категории вас отнести: малого риска (водитель не превышает скорость и не употребляет ни капли спиртного за рулем) или высокого риска (водитель гонит по шоссе, отхлебывая из уже полупустой бутылки вина)? У страховой компании нет на вас никаких данных — ни малейшего представления о «положении первого мяча», — поэтому вас могут отнести с равной априорной вероятностью и к той, и к другой категории, либо, на основании известных данных о начинающих водителях, сразу приписать к категории высокого риска, скажем, 1 к 3. В таком случае компания применит к вам смешанную оценку — одна треть высокого риска и две трети малого риска — и возьмет с вас одну треть платы, которую берет с водителей категории высокого риска, и две трети платы, которую берет с водителей категории малого риска. Далее после года наблюдений — то есть, после броска одного из вторых байесовских мячей, — компания будет располагать другими данными, чтобы переоценить модель, привести в соответствие ранее рассчитанные пропорции в одну треть и две трети и определить новую ставку. Если у вас не было ни одной аварии, соотношение малого риска и следовательно низкого тарифа возрастет; если у вас произошло две аварии, соотношение снизится. Точные размеры соответствия даются теорией Байеса. Таким же образом страховая компания может периодически приводить в соответствие свои оценки в последующие годы, отражая факт того, что у вас не было аварии или же вы дважды попали в аварию, когда ехали по улице с односторонним движением не в ту сторону, Да еще одной рукой прижимали к уху мобильный телефон, а в другой держали пончик. Вот почему страховые компании могут назначать скидки так называемым «примерным водителям»: отсутствие аварий повышает апостериорную вероятность того, что водитель входит в категорию малого риска.

Очевидно, что многие детали байесовской теории довольно сложны. Но как я уже говорил, во время анализа задачи про двух дочерей я использовал новые данные для «урезания» пространства элементарных событий и соответственной выверки вероятностей. В задаче с двумя дочерьми пространство элементарных событий изначально было таким: (мальчик, мальчик), (мальчик, девочка), (девочка, мальчик), (девочка, девочка), однако оно сокращается до следующих параметров: (мальчик, девочка), (девочка, мальчик), (девочка, девочка), если вы узнаете, что один из детей — девочка, что шансы на семью из двух девочек составляют 1 из 3. Попробуем применить эту несложную стратегию и посмотрим, что выйдет при условии, если вам станет известно следующее: один из детей — девочка по имени Флорида.

В задаче про девочку по имени Флорида нас интересует помимо пола детей еще и имя, поскольку речь о девочках. Наше первоначальное пространство элементарных событий должно включать в себя все вероятности, поэтому список содержит и пол, и имя. Обозначим девочку по имени Флорида как «девочка Ф», а девочку по имени не Флорида как «девочка не Ф». Обозначим пространство элементарных событий: (мальчик, мальчик), (мальчик, девочка Ф.), (мальчик, девочка не Ф.), (девочка Ф., мальчик), (девочка не Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка не Ф.), (девочка не Ф., девочка не Ф.), (девочка Ф., девочка Ф.).

Ну а теперь «урежем». Так как нам известно, что один из детей — девочка по имени Флорида, можно сократить пространство элементарных событий: (мальчик, девочка Ф.), (девочка Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка Ф.). Теперь видно, чем еще эта задача отличается от задачи про двух дочерей. Поскольку утверждения, что девочку зовут Флорида и девочку зовут не Флорида, нельзя назвать равновероятными, не являются таковыми и все элементы пространства элементарных событий.

В 1935, последнем году, за который Управление социальным обеспечением предоставило статистику в отношении имени, около 1 из 30.000 девочек были наречены именем Флорида{107} . Поскольку имя становилось все менее популярным, предположим, что сегодня вероятность появления девочки по имени Флорида равна 1 из 1 млн. Это значит следующее: если нам станет известно, что определенную из двух девочку зовут не Флорида, ничего страшного, однако если мы узнаем, что ее зовут Флорида, можно сказать, что мы попали в точку. Вероятность того, что обеих девочек назовут именем Флорида (даже если мы проигнорируем тот факт, что обычно родители избегают давать детям одинаковые имена), настолько мала, что можно спокойно ею пренебречь. Итак, вот что у нас остается: (мальчик, девочка Ф.), (девочка Ф., мальчик), (девочка не Ф., девочка Ф.), (девочка Ф., девочка не Ф.). Все эти события в весьма хорошем приближении равновозможны.

Поскольку 2 из 4, то есть половина элементов пространства элементарных событий являются семьями с двумя девочками, ответом не может быть 1 из 3 — как это было в задаче с двумя дочерьми, — ответом является 1 из 2. Все дело в дополнительной информации — осведомленности насчет имени девочки.

Если вы по-прежнему теряетесь в догадках, то можно представить себе следующее: в очень-очень большой комнате мы собираем 75 млн семей с двумя Детьми, из которых хотя бы один ребенок — девочка. Как нам стало известно из задачи с двумя дочерьми, в комнате окажется около 25 млн семей с двумя девочками и 50 млн семей с одной девочкой (25 млн семей, в которых девочка является старшим ребенком, и столько же семей, в которых девочка является младшим ребенком). Далее «урезаем»: просим остаться в комнате только те семьи, в которых есть девочки по имени Флорида. Поскольку Флорида — 1 имя на 1 млн имен, останутся около 50 из 50 млн семей с одной девочкой. А из 25 млн семей с двумя девочками 50 тоже останутся: 25 потому, что их первый ребенок назван по имени Флорида, другие 25 потому, что их младшая дочь названа Флоридой. В этом примере всех девочек можно представить как лотерейные билеты; в таком случае девочки по имени Флорида станут выигрышными билетами. И хотя семей, в которых один из двух детей — девочка, в два раза больше, чем семей, в которых оба ребенка — девочки, семьи с двумя девочками обладают двумя лотерейными билетами, поэтому среди выигравших будет примерно одинаковое соотношение семей с одной девочкой и семей с двумя девочками.

В теории я расписал задачу про девочку по имени Флорида уж очень подробно, до такой степени, что

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату