никогда не попадет к далекому наблюдателю. Вновь слиться и исчезнуть, как это случается с виртуальными частицами в обычном вакууме, они уже не могут. Так в пространстве возникает поток частиц от черной дыры. В этом случае энергия ее расходуется, а сама черная дыра уменьшается в размере. С. Хоукинг показал, что энергию она излучает так, как будто ее поверхность нагрета до определенной температуры.
Следует сразу же подчеркнуть, что температура черных дыр звездной массы совершенно ничтожна. Так, для черной дыры в 10 масс Солнца температура равна всего одной десятимиллионной доле градуса шкалы Кельвина. Чем больше масса, тем меньше температура, поэтому для сверхмассивных черных дыр температура их и вовсе пренебрежимо мала. И наоборот, чем меньше масса черной дыры, тем выше ее температура, тем быстрее идет процесс превращения ее массы в излучение. Как уже было сказано, черные дыры звездной массы излучают ничтожно мало. В естественных условиях они поглощают гораздо больше энергии в виде падающего в них излучения или разреженного вещества. Но достаточно малая черная дыра может излучать энергию в заметном темпе, и к ней как к источнику энергии следует отнестись серьезно. Так, черная дыра с массой миллиард тонн (масса небольшой горы) будет испускать сто миллионов миллиардов эрг в секунду на протяжении десяти миллиардов лет. Температура ее при этом будет равна около ста миллиардов градусов. Заметим, что это в десять тысяч раз больше, чем температура в недрах Солнца. Размеры рассматриваемой черной дыры сверх-микроскопические — они порядка размеров атомного ядра.
Если чрезвычайно медленный процесс потери энергии черной дырой звездной массы на квантовое излучение называют квантовым испарением, то излучение энергии маломассивными черными дырами испарением уже не назовешь, это вполне реальное свечение. В ходе такого свечения масса таких дыр уменьшается во всевозрастающем темпе. Когда она уменьшится до одного миллиона тонн, то температура излучения достигнет ста миллионов миллиардов градусов. Процесс излучения превратится во взрыв. Последние тысячи тонн взрываются за одну десятую долю секунды, превращаясь в энергию, что соответствует взрыву одного миллиона мегатонных водородных бомб. Таким образом, квантовое выделение энергии маломассивными дырами весьма эффективно. Но могут ли такие черные дыры возникать?
Как мы уже подчеркивали, искусственное их изготовление совершенно нереально, по крайней мере при современном уровне науки. А могут ли они возникнуть в природе?
Мы в дальнейшем увидим, что ответ на этот вопрос положителен. Черные мини-дыры могли возникать в начале расширения Вселенной. Почему же им не образоваться в сегодняшней Вселенной и их очень трудно изготовить даже в принципе в лаборатории?
Дело в том, что для этого необходимо сжать вещество до очень большой плотности. Чтобы превратить Солнце в черную дыру, его вещество необходимо сжать до ядерной плотности; а для превращения Земли в черную дыру потребуется сжать ее вещество до плотности, еще в сто миллиардов раз большей.
Для столь чудовищного сжатия требуются огромные силы. В массивных звездах эти силы обеспечивает их гравитация. В случае же малых масс гравитации явно недостаточно, и требуется большое внешнее давление.
Ни в природе, ни в современных лабораториях таких колоссальных сил нет.
Но если мы обратимся к прошлой истории Вселенной (об этом мы поговорим далее), то легко заметим, что в самом начале ее расширения, около 15 миллиардов лет назад, были условия, благоприятные для возникновения маленьких черных дыр. Действительно, тогда все вещество находилось в состоянии огромной плотности и никакого дополнительного сжатия не требовалось. Правда, это вещество расширялось с громадной скоростью. Поэтому для формирования черной дыры необходимо, чтобы в небольшом объеме либо скорость расширения вещества была меньше, либо вещества было несколько больше, чем в таких же соседних объемах. Тогда силы тяготения смогли бы затормозить расширение в этом объеме и через некоторое время обратить его в сжатие, после чего возникла бы маленькая черная дыра. На такую возможность в 1966 году указали Я. Зельдович и я, а в 1971 году С. Хоукинг.
Итак, во Вселенной на раннем этапе могли возникать маленькие черные дыры, причем их масса могла быть намного меньше масс звезд. Что же с ними стало в дальнейшем?
Их судьба зависела от массы. Малые черные дыры стали излучать квантовым образом. Как показывают расчеты, к нашему времени успели полностью «испариться» все черные дыры с массой меньше миллиарда тонн. Более тяжелые дожили до наших дней. Могут ли они быть обнаружены астрономическими методами, если действительно существуют во Вселенной?
Самым действенным способом их обнаружения являются попытки детектировать создаваемое ими жесткое квантовое излучение. Наблюдение таких квантов, приходящих из космоса, могло бы помочь обнаружить первичные черные дыры. Пока же они не обнаружены. И можно только сказать, что количество черных дыр с массой около миллиарда тонн во Вселенной должно быть в среднем не больше тысячи на каждый кубический световой год. Если бы их было больше, то общее их излучение было бы заметно. Число «тысяча», конечно, внушительное, но вспомним, что масса их ничтожна по сравнению с массой звезд.
Только будущие наблюдения покажут, существуют ли черные мини-дыры во Вселенной.
Из нашего предыдущего рассказа ясно, что в природе, вероятно, есть массивные черные дыры звездного происхождения, сверхмассивные — в центрах галактик и, возможно также, мини-дыры ранней Вселенной. В будущем все эти черные дыры могут использоваться как источник энергии.
Принципы использования их могут быть разными. Например, можно представить себе достаточное число черных мини-дыр, движущихся на орбитах вокруг Земли и излучающих квантовым образом. Но как вывести такую дыру на околоземную орбиту? Как вообще транспортировать черные дыры? Это ведь не обыкновенное тело. У черной дыры нет материальной поверхности. Ее нельзя зацепить канатом и отбуксировать в нужное место. К черной дыре не приделаешь реактивный двигатель, чтобы с его помощью ее перемещать. Наконец, ее не заключишь в какой-нибудь контейнер. Действительно, вспомним, что при массе, равной массе горы, размер ее соответствует размеру атомного ядра. Она будет свободно проходить через любые преграды, свободно прошивать толщу земного шара.
Как же можно все-таки заставить черную дыру двигаться в нужном направлении, увеличивать и уменьшать скорость этого движения по нашему желанию? Давайте пофантазируем об этом. Чем можно воздействовать на черную дыру?
Прежде всего, конечно, это поле тяготения. Черная дыра подвластна действию тяготения точно так же, как и любой вид физической материи. Она падает в этом поле с тем же ускорением свободного падения, что и любые другие тела, и так же искривляет траекторию своего движения. Ясно поэтому, что простейший способ заставить ее начать двигаться в нужном направлении — это использование поля тяготения.
Можно поступить, например, следующим способом (рис. 6). Подведем к черной дыре достаточно массивное тело, скажем, астероид с массой, больше ее массы. Сделать это можно с помощью установленных на нем реактивных двигателей. Черная дыра начнет падать в поле тяготения астероида в направлении к его центру масс. Подождем некоторое время, пока она приобретет достаточную скорость в направлении астероида, после чего его можно увести подальше в пространство, а черная дыра продолжит свой полет по инерции с приобретенной скоростью.
Конечно, при сравнительно скромной массе и реальных размерах астероида сообщаемое его полем ускорение будет невелико. Невелика может быть и приобретенная дырой скорость. Так, астероид размером в сто раз меньше Земли может разогнать черную дыру до скорости около ста метров в секунду.
Можно, однако, усовершенствовать этот способ. Надо заставить двигатели ракет, установленных на астероиде, работать так, чтобы придать ему ускорение в сторону «убегания» от черной дыры и равное по величине ускорению, с которым черная дыра падает на астероид. В этом случае система астероид — черная дыра может хоть и медленно, но постоянно ускоряться.
Подобным же образом можно и тормозить черную дыру, подводя к ней астероид с противоположной стороны, а также изменять направление ее движения. Если она выведена на орбиту вокруг Земли, то, подводя к ней с той или иной стороны массивные тела, можно корректировать ее орбиту полем тяготения