Обратное отклонение пластмассового футбольного мяча происходит из-за отделения пограничного слоя. Сбоку от мяча, где относительная скорость воздуха и мяча больше, поток воздуха в пограничном слое становится турбулентным. С другой стороны он остается ламинарным. Ламинарный пограничный слой отделяется от поверхности мяча сразу же, как только поток воздуха перестает прижимать его к поверхности. В отличие от него, турбулентный пограничный слой остается в контакте с поверхностью мяча дальше по его окружности. В итоге задняя по ходу движения часть мяча отклоняется в направлении, противоположном его вращению. Возникает сила, направленная к боку мяча, который движется в направлении, противоположном потоку воздуха (справа налево — для мяча, закрученного по часовой стрелке).
Эксперименты показывают, что основной фактор, управляющий отклонениями мяча, — отношение скорости вращения его поверхности к скорости прямолинейного движения. Обратное отклонение наблюдается, когда это соотношение мало (меньше 0,4), а эффект Магнуса проявляется при более высоких соотношениях. Этим объясняется, почему быстро крутящийся теннисный мяч вращается в направлении, противоположном футбольному.
Отклонение вращающегося мяча обычно приписывают эффекту Магнуса, но еще за 100 лет до Гейнриха Магнуса Бенджамин Робине изучал вращение пушечных ядер, а в 1742 году опубликовал подробное объяснение, почему ядра даже в безветренные дни отклоняются от траектории.
«Чем вызвано появление разных цветов на чистой поверхности закаливаемого железа или стали после нагревания и охлаждения? Цвета варьируются от желтого при нагревании металла до 200 °C до золотистого, коричневого, лилового, синего и, наконец, черного при нагревании до 600 °C. И поскольку окисленная голубоватая или лиловая поверхность встречается у стальных часовых механизмов, прекрасно сохранившихся с XIX века, хотелось бы узнать, какова физическая природа этого прозрачного и очень стойкого цветного слоя?»
Горячие печные газы, применяемые для тепловой обработки стали, окисляют элементы, содержащиеся в сплаве, например хром, чтобы образовать тонкую поверхностную пленку. Эта пленка искажает видимые световые волны и создает цветовые эффекты, о которых упоминает автор вопроса.
Толщина пленки определяет видимый цвет стали, поскольку она влияет на распространение света с разной длиной волны. Более тонкие пленки, образующиеся при низких температурах, кажутся желтыми или золотистыми. Толстые пленки на стали — светло-голубыми. Самые толстые пленки иссиня-черные или черные.
Цвета закалки на чистой стали нестойкие, обычно они пропадают, если от ржавчины увеличивается толщина поверхностной пленки, где образуются наслоения окислов железа. Многие детали часов, упомянутых в вопросе, обязаны стойкостью цветов закалки практике выдерживания закаливаемой стали в жире кашалота. Этот жир создает прозрачное восковое защитное покрытие на оксидных пленках и надолго сохраняет их цвет. Широкое применение этого метода имело один недостаток: оно стало причиной сокращения численности кашалотов.
«Мы провели опыт, о котором нам рассказывали учителя естествознания: стоящую в воде свечу надо накрыть перевернутым стаканом. Когда свеча гаснет, уровень воды в стакане повышается.
Нам объяснили, что повышение уровня воды вызвано тем, что при горении свечи расходовался кислород. Но мы поставили под стакан четыре свечи вместо одной, а уровень воды поднялся гораздо выше. Почему?»
Вопрос Эммы, Ребекки и Эндрю о вполне понятном эксперименте со одной свечой или несколькими свечами показывает, как молодые и пытливые умы опровергают ошибочные объяснения, которые школьные учителя физики повторяют десятилетиями.
Поглощение кислорода может отчасти быть причиной повышения уровня воды, потому что данный объем на моль кислорода сожжет углерод воска с образованием примерно такого же объема на моль углекислого газа и водород с образованием двух объемов на моль водяного пара соответственно.
Первый частично растворится в воде, а последний почти полностью конденсируется. Это приведет к чистому уменьшению объема пара.
Но все это — второстепенные детали, главное — тепло, созданное горящей свечой или свечами. К тому времени, как мы накрываем их перевернутым стаканом, свечи успевают повысить температуру вокруг них сильнее, чем сделала бы одна свеча.
Когда свеча или свечи гаснут, окружающий их воздух сжимается, поскольку остывает, а степень сжатия прямо пропорциональна начальной средней температуре объема воздуха под стаканом. Так что чем больше свечей, тем больше тепла, тем выше температура и выше уровень воды в стакане при охлаждении воздуха.
Вот наглядное доказательство того, что нельзя верить учителям на слово, не задав предварительно несколько вопросов по существу.
Поздравляю детей, которые экспериментально опровергли хрестоматийное заблуждение насчет свечи, перевернутой банки, емкости с водой и предположительного выжигания всего кислорода из банки.
Увидев, как четыре горящие свечи заставили уровень воды в банке подняться еще выше, они поняли, что основная причина этого эффекта — тепло свечей, от которого воздух в банке расширяется. Они наверняка заметили, что при расширении воздух издавал булькающие звуки, выходя из-под края банки. После того как свечи потухли, наступила краткая пауза, и только потом уровень воды поднялся — когда оставшийся воздух остыл и снова сжался.
Пламя свечи сжигает лишь небольшую часть имеющегося в его распоряжении кислорода. Поэтому неверным будет утверждение, что этот эксперимент можно объяснить изменением количественного содержания кислорода в воздухе.