посетив другие планеты, он должен будет взлетать на своем корабле с их поверхности. Какие понадобятся скорости для освобождения от их притяжения? Это можно вычислить, зная радиус планеты и напряжение тяжести на ее поверхности (см. Приложение 4).
Результаты вычислений даны в следующей табличке:
Труднее всего было бы подняться с поверхности (фотосферы) Солнца, если бы это могло понадобиться: нужна скорость в 618 км/с. Зато с лунной поверхности можно отлететь при скорости всего в 2,4 км/с, не слишком далекой от той, с какой снаряды покидали жерло пушки «Колоссаль» при бомбардировке Парижа с расстояния 120 км.
Небесные тела, от которых всего легче отчаливать космическому кораблю, – это астероиды и мелкие планетные спутники. Чтобы покинуть, например, поверхность одного из спутников Марса – самых крошечных из известных нам планетных лун, – достаточно было бы сообщить ракете начальную скорость всего лишь в 20 м/с. Отсюда ясно, какое важное значение приобретут в будущем подобные миниатюрные небесные тела в качестве удобных пристаней для временных стоянок космических кораблей.
Зато высадка на Юпитер (и обратный взлет с него) совершенно неосуществимы при тех средствах, которые мы можем предвидеть. Действительно, для подъема с Юпитера нужна начальная скорость 60 км/с – в 12 раз большая, чем скорость вытекания газа в водородной ракете. Но если
От скоростей перейдем к маршрутам путешествий и к их продолжительности. С путями следования космических кораблей дело обстоит довольно своеобразно. Казалось бы, в просторе межпланетных пустынь самый естественный и выгодный путь – прямая линия. Где, как не в мировом пространстве, целесообразен был бы тот примитивный способ решения дорожного вопроса, с помощью которого Николай I наметил некогда направление Октябрьской дороги – прокладывать пути по линейке? Между тем именно прямые направления явятся в звездной навигации редким исключением, правилом же будут пути кривые. Кратчайший в геометрическом смысле путь окажется в практике звездоплавания настолько невыгодным в смысле расходования горючего, что им совершенно невозможно будет воспользоваться.
Мы поймем происхождение этого парадокса, если вспомним, что ракета, покидающая земной шар по направлению радиуса земной орбиты, сохраняет и ту скорость, какую имеет земной шар, т. е. 30 км/с по направлению, перпендикулярному к радиусу. Если бы мы пожелали направить звездолет по кратчайшему пути на Марс в момент противостояния, то должны были бы прежде всего свести к нулю 30-километровую скорость звездолета по касательной к земной орбите. Для уничтожения этой скорости нет другого средства, как сообщить ракете такую же скорость в противоположном направлении. Значит, еще до начала собственно полета на Марс звездолет должен развить скорость 30 км/с, для чего при нефтяном горючем потребовался бы запас его в 1500 раз тяжелее самой ракеты. Уже и это совершенно неисполнимо, – а ведь нужно еще иметь запас горючего для сообщения ракете значительной скорости по направлению к орбите Марса; и наконец, понадобится весьма много горючего для безопасного спуска на Марс, так как, приблизившись под прямым углом к его движению, звездолет должен приобрести ту скорость, с какою Марс движется по орбите (24 км/с). Общий итог так огромен, что неосуществимость подобного полета становится совершенно бесспорной.
Сходные затруднения представятся при полете по прямому пути и к другим планетам, безразлично – внешним или внутренним. Приходится поэтому отказаться от прямолинейных маршрутов и избрать иные пути. Как мореплаватели для передвижения парусных судов пользуются морскими и воздушными течениями, так звездоплаватели будут пользоваться притяжением Солнца, направляя корабли по путям, определенным законами небесной механики. А эти дороги – не прямые: естественный путь космического корабля – дуга эллипса, более или менее вытянутого. Как и всякое небесное тело, звездолет должен двигаться по коническому сечению.
Рассмотрим сначала путешествие на соседние с нами планеты – Марс и Венеру. Лунные маршруты сложнее, и о них мы поговорим особо.
Полет на Марс с наименьшим расходом энергии может быть осуществлен по эллиптическому пути, который охватывает земную орбиту и лежит внутри орбиты Марса, касаясь обеих орбит в начальной и конечной точках путешествия. Рисунок 27 поясняет сказанное:
Рис. 27. Маршрут наивыгоднейшего перелета с Земли (7) на Марс (
Отсюда возникает необходимость выждать некоторый срок, пребывая в состоянии спутника Марса, прежде чем пуститься в обратный путь. По расчетам германского теоретика звездоплавания В. Го манн а, период выжидания при полете на Марс должен длиться 450 суток, так что все путешествие в оба конца отнимет 970 суток. Таков самый экономный, в смысле расхода горючего, маршрут. Сократить продолжительность возможно лишь за счет увеличения скорости, т. е. расхода горючего.
Для трехлетнего путешествия в мировом пространстве потребовалось бы прежде всего снабдить пассажиров огромным запасом пищи. Можно ли рассчитывать на изобретение в будущем каких-нибудь питательных пилюль, которые при ничтожном весе вполне насытят человека? Не входя в подробности, скажем прямо, что подобные мечты несбыточны. Ведь пища снабжает нас не только энергией, но и материей; пилюля не может содержать достаточно вещества для возмещения всех материальных потерь животного организма. «Покуда человек остается человеком, а природа, в которой мы живем, не перестает быть сама собой, мечтать о насыщении человека несколькими таблетками так же мало основательно, как верить, что кто-либо мог пять тысяч человек насытить тремя хлебами» (Б. Завадовский, «Может ли человек насытиться таблеткой?»). Минимальный вес суточного пищевого пайка на одного человека не может быть ниже 600 г. Это составляет при путешествии на Марс запас пищи свыше полутонны для каждого пассажира, а следовательно – много десятков тонн избыточного горючего.
Вообще, осуществление перелета на Марс встречает весьма серьезные затруднения, пути к разрешению которых в настоящее время еще не намечены.
Но как бы ни были впоследствии разрешены эти вопросы, лететь на Марс во всяком случае придется не по прямому пути в 60 миллионов километров, а по гораздо более длинному окружному пути, пользуясь даровою силою притяжения Солнца, нашего испытанного союзника в работе на Земле. «При путешествии на Марс и обратно, – говорил немецкий теоретик звездоплавания И. Винклер , – тяготение является врагом в течение десяти минут, зато в течение ряда лет – нашим другом».
Подобным же образом можно заставить работать Солнце и при перелете на другую нашу соседку – Венеру. Здесь также надо избрать окружной путь, по эллипсу, который в этом случае будет касаться извне орбиты Венеры и изнутри – орбиты Земли. Путешествие в один конец по такому эллипсу продлится 147 с небольшим суток, а полный оборот – 295 суток. Возвращение же на Землю без расхода горючего возможно только через два с лишним года, после 470-суточного ожидания в качестве спутника Венеры.
Впрочем, германским инженером Гоманном разработан проект более кратковременного путешествия к Венере (без высадки) с возвращением на Землю: при сравнительно небольшом дополнительном расходе горючего в пути общая длительность перелета может быть сведена к 1,6 года. Тем же исследователем предложен маршрут 11/2-годового путешествия с приближением к Марсу и к Венере (не ближе 8 000 000 км). Другой исследователь этого вопроса, немецкий инженер Пирке, разработал маршруты, уменьшающие продолжительность перелета на Марс до 192 суток, а на Венеру – до 97 дней; но эти маршруты связаны с гораздо большим расходом горючего. При желании еще более ускорить путешествие на Венеру можно избрать путь по эллипсу, касающемуся орбит Земли и Меркурия. Этот маршрут отнял бы всего 64 дня, но, конечно, был бы еще менее экономичен.
Обратимся теперь к лунным путешествиям и рассмотрим два проекта: первый – полет на Луну с высадкой на ней; второй – вылет за лунную орбиту с целью обозрения недоступной для нас «задней» стороны ночного светила. (Читателю, вероятно, известно, что Луна, обходя вокруг Земли, обращена к ней все время одной и той же своей стороной; противоположной стороны нашего спутника мы видеть не можем, и о физическом ее устройстве нам ничего неизвестно.) [31]
Полет на Луну с