xlink:href='#Autogen_eBook_id167'/>

где левая часть есть выражение (приближенное) для площади, описываемой радиусом-вектором за одну секунду,

a πab — площадь эллипса. Имеем:

Пусть теперь тело (звездолет, планета), движущееся вокруг Солнца по круговой орбите радиуса r, должно перейти в точке А своего пути на эллиптическую орбиту с полуосями а и Ь. Определим, какое для этого необходимо изменение скорости.

Из третьего закона Кеплера следует, что отношение квадрата периода обращения планеты к кубу ее среднего расстояния от Солнца (или большой полуоси) есть величина постоянная; для планет солнечной системы эта постоянная равна (в единицах системы см-г-сек)

откуда

Отсюда имеем скорость v кругового движения около Солнца на расстоянии r:

Обращаясь к эллиптической орбите, имеем прежде всего

Из формулы (5) мы знаем, что скорость vЭ движения по эллиптической орбите в точке А

Так как скорость vK, движения по круговой орбите (см. (6))

то из сопоставления формул (6) и (7) имеем

По этой формуле и вычисляется скорость, какую необходимо сообщить звездолету, чтобы с круговой орбиты он перешел на эллиптическую или удалился в бесконечность. В последнем случае полагаем большую полуось а эллипса равной бесконечности. Имеем:

т. е. для удаления звездолета с круговой орбиты в бесконечность необходимо, чтобы круговая скорость его увеличилась в 

раз. Так, для удаления с земной орбиты (соответствующая скорость 29,6 км/с) в бесконечность нужна скорость

т. е. приращение скорости 41,8 – 29,6 = 12,2 км/с.

Теперь мы можем вычислить скорость, какая должна быть сообщена звездолету для преодоления притяжения Земли и Солнца и, следовательно, для свободного удаления с Земли в бесконечность. Чтобы преодолеть притяжение, нужна начальная скорость 11,2 км/с, т. е. работа (живая сила) для каждого килограмма веса звездолета.

Чтобы преодолеть солнечное притяжение, нужна работа (v = 12 200 м/с)

Общая работа для преодоления совокупного притяжения Земли и Солнца равна

Искомая скорость × получается из уравнения:

откуда

Вычислим теперь начальные скорости, необходимые для достижения планет Марса и Венеры. Для Марса

Поэтому из формулы (8) имеем

т. е. нужна добавочная скорость 32,6 – 29,6 = 3 км/с.

Искомая скорость для преодоления совокупного притяжения Земли и Солнца вычисляется, как сейчас было показано:

Таким же образом определяем, что для достижения Венеры нужна начальная скорость, не меньшая

Рис. 60. Маршрут перелета с Земли (7) на Венеру ( V)

Продолжительность перелетов

Перелет на Венеру. Продолжительность этого перелета, при условии минимальной затраты горючего, определится, если будет известен период обращения воображаемой планеты по эллипсу TV (рис. 60). Если S — Солнце, то ST= 150 × 106 км, SV= 108 × 106 км; среднее расстояние воображаемой планеты от Солнца равно 1/2(150 + 108) × 106 = 129 × 106 км. По третьему закону Кеплера,

где x – продолжительность обращения воображаемой планеты, а 225 суток – продолжительность обращения Венеры;

Значит, полет в один конец займет 147 суток.

Перелет на Марс. Время перелета определяется из пропорции:

откуда

у = 519 сут.

Значит, перелет в один конец продлится 259 суток.

5. Внеземная станция

Для относящихся сюда расчетов воспользуемся рис. 54. Круг радиуса г пусть изображает земной шар, а эллипс – тот путь, по которому звездолет из точки А земной поверхности (экватора) долетает до круговой орбиты искусственного спутника.

Прежде всего вычислим, каков должен быть радиус круговой орбиты (не изображенной на чертеже) этого спутника, чтобы время его обращения равнялось земным суткам. Применим третий закон Кеплера, зная, что Луна обходит Землю в 27,3 суток на расстоянии 60,3 земных радиусов от центра Земли:

откуда

Итак, внеземная станция должна находиться в расстоянии 6,66 земного радиуса от центра Земли, чтобы период обращения равнялся 24 часам.

Скорость, которую нужно сообщить на Земле звездолету, чтобы он достиг орбиты такого искусственного спутника, есть скорость в точке А эллипса (рис. 59). Вычислим ее по формуле (8):

Здесь vK – скорость свободного кругового обращения небесного тела около центра Земли на расстоянии одного земного радиуса, т. е. 7,92 км/с. Следовательно, искомая скорость v Aотлета

vA = 7,92 × 1,32 = 10,5 км/с [50] .

С какой скоростью звездолет достигнет орбиты искусственного спутника? Другими словами: какова скорость в точке В эллипса, противолежащей точке А? Находим ее, пользуясь вторым законом Кеплера; так как площади, описываемые радиусами- векторами в одну секунду, равны, то

10,5 × r = ×  6,66 г,

откуда

Сравним ее со скоростью движения внеземной станции по своей круговой орбите; последняя скорость, очевидно, в 6,66 раз больше скорости движения точек земного экватора (0,465 км):

0,465 × 6,66 = 3,1 км/с.

Значит, звездолету понадобится еще дополнительная скорость в 3,1–1,6 = 1,5 км/с, чтобы пристать к внеземной станции.

Далее, скорость, с какою звездолет должен покинуть внеземную станцию для достижения, например, орбиты

Луны, вычислимпо формуле (8), вообразив соответствующий эллипс, охватывающий орбиту станции и касающийся изнутри орбиты Луны:

Так как скорость станции (vc) равна 3,1 км/с, то искомая скорость равна 1,34 × 3,1=4,1 км/с.

Это всего на 300 м меньше той скорости, какая нужна здесь для полного освобождения от земного притяжения

Если принять во внимание, что сама станция-спутник обладает скоростью в том же направлении, то для достижения Луны с внеземной станции понадобится лишь дополнительная скорость в 4,1–3,1 = 1 км/с.

Соответствующее отношение

 масс заряженной и незаряженной ракет, при скорости вытекания газа 4000 м, равно

Масса горючего должна составлять менее 1/2 массы ракеты после взрывания. Даже если мы желаем, чтобы звездолет мог возвратиться на внеземную станцию, т. е. чтобы он сохранил запас горючего, достаточный для торможения (0,28 окончательной массы), мы должны снабдить его первоначально запасом горючего, составляющим только 0,4 веса всей заряженной ракеты. Отсюда очевидна огромная выгода создания внеземной станции в смысле облегчения остальных задач звездоплавания.

6. Давление внутри пушечного снаряда

Нам придется пользоваться лишь двумя формулами равноускоренного движения, именно:

1) Скорость V в конце t-й секунды равна at, где а – ускорение:

V = at.

2) Пространство S, пройденное в течение t секунд, определяется формулой:

По этим двум формулам легко определить (разумеется, только

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату