колебаний, например качки, его стали укреплять на кардановом подвесе. В XVII в. морской компас был снабжен пеленгатором – вращающейся диаметральной линейкой с визирами на концах. Это позволило точнее отсчитывать направления на объекты – пеленги. Внесенные в конструкцию компаса усовершенствования сделали компас основным навигационным прибором в судовождении. Точность показаний современных магнитных компасов в средних широтах при отсутствии качки составляет 0,3–0,5 градуса.
Авиационный магнитный компас схож по конструкции с судовым, но сделан с учетом условий работы: сильных вибраций и больших ускорений.
Среди недостатков магнитного компаса – необходимость внесения поправок с учетом магнитного склонения данной местности и девиации – отклонения стрелки от направления на магнитный полюс под влиянием намагниченных тел, например стального корпуса судна, а также электромагнитных полей электрических и радиоустановок. Точность магнитного компаса резко снижается вблизи магнитных полюсов и крупных магнитных аномалий, например крупных залежей железной руды.
В XIX в. возросли требования, предъявляемые к компасам. Появление кораблей с металлическими корпусами повлияло на их точность. Кроме того, стали осваиваться высокие широты, где магнитный компас, практически, бесполезен.
Поэтому, в добавление к магнитному, был создан гирокомпас. Его действие основано на использовании свойств гироскопа и суточного вращения Земли.
Принцип работы гироскопа такой же, как у детского волчка: быстро вращающееся твердое тело, ось вращения которого может менять направление в пространстве. Свойства гироскопа проявляются при выполнении двух условий: его ось вращения должна иметь возможность изменять свое направление в пространстве, а угловая скорость вращения гироскопа должна быть намного выше, чем угловая скорость, с которой сама ось меняет свое направление. Основное свойство уравновешенного гироскопа с тремя степенями свободы, позволяющее применять его для определения направления, – стремление его оси сохранять приданное ей первоначальное направление, независимо от перемещения основания и толчков.
Идея гироскопа была предложена французским ученым Фуко. Его гирокомпас представлял собой прибор с двумя степенями свободы, ось которого перемещается в плоскости горизонта благодаря возникающему из-за вращения Земли гироскопическому моменту стремиться к совмещению с плоскостью географического меридиана. Гироскоп Фуко не нашел применения на подвижных объектах из-за подверженности колебаниям. На подвижных объектах применяются гирокомпасы, в которых используются гироскопы с тремя степенями свободы.
Преимущества гирокомпаса по сравнению с магнитным состоят в том, что он показывает направление географического, а не магнитного меридиана, на его работу меньше влияют большие массы металла. Его точность в условиях колебаний намного выше.
Существуют также астрономические компасы, в которых применяются пеленгаторы, постоянно следящие за положением какого-либо небесного светила, например Солнца. Помимо пеленгатора астрономический компас состоит из вычислителя азимута светила и указателя курса. Его принцип – алгебраическое сложение курсового угла и вычисленного азимута светила. Такой компас позволяет определять курс в любом месте Земли, независимо от скорости и высоты.
Радиокомпасы автоматически фиксируют направление на радиомаяк.
Ни один из существующих типов компасов не может обеспечить точного измерения курса в любом месте Земли, независимо от погоды и других факторов. Поэтому компасы разных типов объединяют в единые курсовые системы.
Конвейер
Конвейер (англ.
Конвейеры – это механические непрерывные транспортные средства для перемещения различных грузов на небольшие расстояния. Конвейеры разных типов применяются во всех отраслях промышленности для погрузки-выгрузки и транспортировки материалов в процессе производства.
Принято считать, что конвейер – изобретение XX века, вызванное к жизни требованиями массового производства. Однако почти все основные принципы конвейерной механизации были известны уже в XV в. Грузоподъемное оборудование существовало в древности: подъемные устройства использовались в Египте в XVI в. до н. э.
За несколько тысячелетий до н. э. в Древнем Китае и Индии для непрерывной подачи воды из водоемов в оросительные системы использовали цепные насосы, которые можно считать прототипами скребковых конвейеров. В Месопотамии и Древнем Египте применяли многоковшовые и винтовые водоподъемники – предшественники современных ковшовых элеваторов и винтовых конвейеров. Первые попытки применения скребковых и винтовых конвейеров для перемещения насыпных материалов (например, в мукомольном производстве) относятся к XVI–XVII векам. В конце XVIII в. конвейеры стали систематически использовать для транспортирования легких сыпучих материалов на небольшие расстояния.
В 30-е годы XIX в. с той же целью впервые были применены конвейеры с лентами из прочной ткани. Во второй половине XIX в. началось промышленное использование конвейеров для доставки тяжелых массовых и штучных грузов. Расширение областей применения конвейеров обусловило появление и эксплуатационное освоение новых типов конвейеров: ленточных с тканевыми прорезиненными лентами (1868 г., Великобритания), стационарных и передвижных пластинчатых (1870 г., Россия), винтовых со спиральными винтами для крупнокусковых материалов (1887 г., США), ковшовых с шарнирно закрепленными ковшами для доставки грузов по сложным трассам (1896 г., США), ленточных со стальными лентами (1905 г., Швеция), инерционных (1906 г., Великобритания, Германия) и т. д. В 1882 г. конвейер был использован для связи технологических агрегатов в поточно-массовом производстве (США).
Несколько позднее стали применяться напольные литейные (1890 г., США), подвесные (1894 г., Великобритания) и специальные сборочные конвейеры (1912–1914 гг., США).
С 80-х годов XIX в. изготовление конвейеров в промышленно развитых странах постепенно выделялось в отдельную область машиностроения. В современных типах конвейеров сохранились основные конструктивные элементы, которые совершенствовались в соответствии с достижениями науки и техники (замена ременного привода электрическим, использование вибрационной техники и т. д.).
Идея конвейера в массовом производстве в полной мере была воплощена автомобильным промышленником Генри Фордом в начале XX в. Стремясь сделать дешевый массовый автомобиль, доступный небогатому покупателю, он внедрил на своих сборочных предприятиях поточное производство. Сам Форд отнюдь не претендовал на авторство в отношении идеи конвейера. В биографической книге «Моя жизнь» он заметил: «Приблизительно 1 апреля 1913 года мы произвели наш первый опыт со сборочным путем. Это было при сборке магнето. Мне кажется, что это был первый подвижный сборочный путь, какой когда-либо был устроен. В принципе, он похож на передвижные пути, которыми пользуются чикагские мясники при разделке туш».
Конвейер действительно теснейшим образом связан с историей производства свежезамороженного мяса.
Впервые эта идея была применена на практике американцем Густавом Свифтом, создателем мощной мясной индустрии в США. Свифт в возрасте четырнадцати лет начал работать на своего брата, мясника на Кейп-Код.
Позже он завел собственное дело и стал торговать крупным рогатым скотом, постепенно продвигаясь со своим товаром на Запад – сперва в Олбани, потом в Буффало и наконец в 1875 году в Чикаго. Здесь он задумался над тем, как обеспечить круглогодичную торговлю мясом. И если транспортировать мясо в холодильниках, то каким образом забивать и разделывать скот перед перевозкой мяса? Свифт нашел