для подвода воздуха. Он укреплен на двух подвижных опорах, по одной с каждой стороны, что позволяет переводить его из горизонтального в вертикальное положение и наоборот.
Наполнив конвертер, его поворачивают в вертикальное положение и через отверстия начинают вдувать воздух, который пузырьками проходит через расплавленный металл. Кислород воздуха при этом приходит в соприкосновение с каждой частицей чугуна и в результате соединяется с углеродом, находящимся в чугуне. Когда процесс закончен, конвертер переводят в горизонтальное положение и прекращают вдувание воздуха. После окончания процесса в конвертере образуется железо, в которое затем добавляют строго определенную дозу примеси, содержащей углерод, поддерживающий дальнейший процесс окисления железа. В результате в конвертере образуется сталь, содержащая требуемый процент углерода.
Процесс бессемерования протекает чрезвычайно быстро, продолжительность его не превышает 15 минут. Количество перерабатываемого чугуна и пропускная способность конвертера весьма велики: в конвертере 10–15 тонн чугуна превращается в железо или сталь в течение 10 минут. В пудлинговой печи на это уходило несколько дней. По качеству бессемеровская сталь во многом превосходила пудлинговое железо.
Признание пришло к Бессемеру в 1862 г.: на Всемирной выставке в Лондоне с успехом демонстрировалась разнообразная продукция из бессемеровской стали. В 1867 г. на Всемирной выставке в Париже изобретатель был удостоен Большой золотой медали. В 1871 г. Бессемер был избран президентом вновь созданного британского Института железа и стали, а в 1879 г. стал членом Лондонского королевского общества.
Следует отметить, что наряду с очевидными достоинствами бессемеровский конвертер имел и недостатки. Основной из них заключался в том, что далеко не любой чугун можно было в конвертере переделывать в сталь. Если для выплавки чугуна использовались железные руды, богатые фосфором, то последний переходил в чугун, а затем и в сталь. В результате сталь становилась хрупкой и не находила применения. В конвертере нельзя переплавлять железный лом или твердый чугун, т. к. не хватает тепла, чтобы расплавить твердые куски металла. К тому же в конвертере можно получать лишь сталь, идущую на обычные нужды.
Один из недостатков конвертера исправил соотечественник Бессемера Сидни Томас. Он подошел к конвертерной плавке с точки зрения химика. На миниатюрном конвертере, вмещавшем около 2,5 кг чугуна, Томас вместе с двоюродным братом начал производить опыты по удалению фосфора из расплавленного металла. Для этого необходимо, чтобы шлаки были не кислыми, а основными, т. е. состоящими из основных окислов. Это требовало, чтобы и огнеупорная футеровка конвертера была основной, иначе она разъедалась бы шлаком и выходила бы из строя. После многочисленных опытов Томас остановился на огнеупорной футеровке, состоящей из извести, смешанной с жидким стеклом. Первые опыты были успешными, и Томас уговорил владельцев завода в Бленавоне, где работал его двоюродный брат, провести опытные плавки. После нескольких десятков плавок Томасу удалось снизить содержание фосфора в стали до сотых долей процента.
Одна из причин его успеха заключалась в следующем: примеси в чугуне выгорали в строгой очередности, зависящей от химических свойств кислорода. Первым выгорал кремний, затем марганец, частично железо. Потом доходит очередь до углерода. Как только запасы углерода иссекают, конвертерный костер начинает угасать. В этот момент металлурги прекращали продувку, считая, что больше гореть нечему, кроме железа. При бессемеровском процессе действительно не стоило продолжать продувку, но если требовалось очистить металл от фосфора, то торопиться не следовало. К этому времени фосфор в металле оставался практически в том же количестве. Томас решил продолжать продувку. И выяснилось, что фосфор сгорает с большим тепловым эффектом, почти не уступая кремнию. В 1877 г. Томас взял патент на один из вариантов технологии, связанной с удалением фосфора, и продал его, чтобы продолжать опыты. Он искал наиболее удачный материал для футеровки и постепенно пришел к выводу, что лучше всего подходит хорошо обожженный доломит. Стенки из него выдерживали воздействие извести, необходимой для создания основного шлака, поглощавшего выделяющийся из металла фосфор.
В 1878 г. Томас берет патент на свое изобретение. Спустя несколько дней после этого на сессии британского Института железа Томасу даже не дали слова, чтобы он мог рассказать о своем изобретении. Среди участников собрания был и Бессемер. Несмотря ни на что, Томас шлифовал свою технологию в промышленных условиях, и вскоре его ждал триумф. Уже после его смерти в конце XIX в. томасовский конвертер по масштабам выплывки стали уступал лишь «старшему брату» – бессемеровскому конвертеру.
Но постепенно роль конвертеров в выплавке стали начала понижаться. До середины XX в. основная нагрузка приходилась на мартеновские печи. Но конвертеры восстановили утраченные было позиции благодаря применению кислородного дутья. Эту идею выдвинул еще в 1875 г. Д. К. Чернов. По его мнению, это должно было повысить температуру металла и сократить время процесса, а также затраты на воздуходувную машину. Но реализовать эту идею стало возможным лишь тогда, когда удалось создать установки для сжижения атмосферного воздуха и получения из него кислорода. В 1933 г. советский ученый Н. И. Мозговой приступил к экспериментам по продувке жидкого чугуна чистым техническим кислородом. В 1950-е годы во многих странах были построены кислородные конвертеры. Кислородное дутье имеет серьезные преимущества: при сохранившейся высокой производительности постройка кислородно- конвертерных цехов обходится дешевле. Кислородное дутье повысило температуру в конвертере, что позволило перерабатывать большие объемы металлолома. Теперь в конвертерах можно было выплавлять легированную сталь многих марок, что раньше считалось привилегией электропечей. Сегодня кислородно- конвертерным способом выплавляется более половины всей производимой в мире стали.
Несмотря на громадное значение бессемеровской стали, проблема улучшения качества металла осталась не решенной. А специальное машиностроение требовало массового производства именно высококачественной стали. Кроме того, дешевая бессемеровская сталь вытеснила старый пудлинговый металл, и появились крупные нереализованные запасы последнего. Требовалось найти пути передела его в сталь.
Проводились опыты, в ходе которых пытались сплавить в пламенных печах чугун и железо, но в них не удавалось достичь необходимой температуры.
В 1856 г. немецкие инженеры братья Вильгельм и Фридрих Сименс сконструировали для нужд стекольной промышленности регенеративную газовую печь. Смешиваясь с воздухом, газ горел, развивая высокую температуру, достаточную для плавки даже тугоплавких металлов. Регенератор представлял собой сдвоенную камеру, заполненную решетчатой кирпичной кладкой, через которую пропускались печные газы, отдававшие кладке значительную часть своего тепла. Затем по этой же кладке в обратном направлении пропускали воздух и горючий газ, предназначенные для горения. Подогрев предотвращал охлаждение печи воздухом или газом и повышал температуру в печи примерно на 1000 градусов.
Но именно высокая температура, как ни странно, вначале тормозила внедрение регенеративных печей в металлургическое производство. Поначалу металл загружали в печь в огнеупорных тиглях, и в ходе плавки расплавлялся не только металл, но и тигль. В ряде опытов оплавлялись даже стенки печи, а однажды рухнул ее свод.
Принцип регенерации тепла и отопления печи газом использовал в своей печи французский металлург Пьер Мартен. По предоставленным В. Сименсом чертежам он построил регенеративную сталеплавильную печь, использовав для кладки ее стен и свода огнеупорный кирпич, способный выдерживать высокие температуры. Она была запущена в 1864 г. Сущность мартеновского процесса заключается в том, что сталь производится на поду регенеративных пламенных печей путем переработки в них чугуна и стального лома (скрапа). В мартеновской печи происходит не просто плавка загруженных материалов: до самого конца процесса в печи идет химическое взаимодействие между металлом, шлаком и газом.
Мартеновская печь относится к типу отражательных печей. Ванна, где идет плавка, выложена огнеупорным кирпичом. Над ванной – сферический свод. Продукты горения топлива, а вместе с ними и тепло отражаются от него и направляются в ванну, где расплавляют металл. Такая конструкция обеспечивает равномерное распределение тепла по всей площади ванны. Сначала в качестве топлива в мартене применяли смесь доменного и коксового газов, сейчас все шире используется природный газ.