этих микроскопов изготовлены из материалов, прозрачных для ультрафиолетовых (кварц, флюорит) и инфракрасных (кремний, германий) лучей. Они снабжены фотокамерами, фиксирующими невидимое изображение и электронно-оптическими преобразователями, превращающими невидимое изображение в видимое.
Стереомикроскоп обеспечивает объемное изображение объекта. Это собственно два микроскопа, выполненные в единой конструкции таким образом, что правый и левый глаза наблюдают объект под разными углами. Они нашли применение в микрохирургии и сборке миниатюрных устройств.
Микроскопы сравнения представляют собой два обычных объединенных микроскопа с единой окулярной системой. В такие микроскопы можно наблюдать сразу два объекта, сравнивая их визуальные характеристики.
В телевизионных микроскопах изображение препарата преобразуется в электрические сигналы, воспроизводящие это изображение на экране электронно-лучевой трубки. В этих микроскопах можно изменять яркость и контраст изображения. С их помощью можно изучать на безопасном расстоянии объекты, опасные для рассмотрения с близкого расстояния, например радиоактивные вещества.
Лучшие оптические микроскопы позволяют увеличить наблюдаемые объекты примерно в 2000 раз. Дальнейшее увеличение невозможно, поскольку свет огибает освещаемый объект, и если его размеры меньше, чем длина волны, такой объект становится невидимым. Минимальный размер предмета, который можно разглядеть в оптический микроскоп – 0,2–0,3 микрометра.
В 1834 г. У. Гамильтон установил, что существует аналогия между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Возможность создания электронного микроскопа появилась в 1924 г. после того, как Л. Де Бройль выдвинул гипотезу, что всем без исключения видам материи – электронам, протонам, атомам и др. присущ корпускулярно-волновой дуализм, то есть они обладают свойствами как частицы, так и волны. Технические предпосылки для создания такого микроскопа появились благодаря исследованиям немецкого физика X. Буша. Он исследовал фокусирующие свойства осесимметричных полей и в 1928 г. разработал магнитную электронную линзу.
В 1928 г. М. Кнолль и М. Руска приступили к созданию первого магнитного просвечивающего микроскопа. Три года спустя они получили изображение объекта, сформированного при помощи пучков электронов. В 1938 г. М. фон Арденне в Германии и в 1942 г. В. К. Зворыкин в США построили первые растровые электронные микроскопы, работающие по принципу сканирования. В них тонкий электронный пучок (зонд) последовательно перемещался по объекту от точки к точке.
В электронном микроскопе, в отличие от оптического, вместо световых лучей используются электроны, а вместо стеклянных линз – электромагнитные катушки или электронные линзы. Источником электронов для освещения объекта является электронная «пушка». В ней источником электронов является металлический катод. Затем электроны собираются в пучок с помощью фокусирующего электрода и под действием сильного электрического поля, действующего между катодом и анодом, набирают энергию. Для создания поля к электродам прикладывается напряжение до 100 киловольт и более. Напряжение регулируется ступенеобразно и отличается большой стабильностью – за 1–3 минуты оно изменяется не более чем на 1–2 миллионные доли от исходного значения.
Выходя из электронной «пушки», пучок электронов с помощью конденсорной линзы направляется на объект, рассеивается на нем и фокусируется объектной линзой, которая создает промежуточное изображение объекта. Проекционная линза вновь собирает электроны и создает второе, еще более увеличенное изображение на люминесцентном экране. На нем под действием ударяющихся в него электронов возникает светящаяся картина объекта. Если поместить под экраном фотопластинку, то можно сфотографировать это изображение.
Все вышеперечисленные узлы электронного микроскопа объединяются в общую конструкцию – колонну. Внутри колонны на всем пути электронов поддерживается вакуум с давлением до 10- 7 Па. Это необходимо для того, чтобы электроны не рассеивались на постороннем веществе – атомах и молекулах газа – во избежание искажения изображения. В основании микроскопа размещаются стабильные источники электрического тока. Здесь же размещается пульт управления микроскопом.
Полное увеличение электронного микроскопа равняется произведению увеличений объективной и проекционной линз. Наблюдаемый объект увеличивается в 20 000–40 000 раз. Электронные микроскопы позволяют получать изображение объектов размером до 2–3·10-8 м.
Музыкальные инструменты
Музыка является важнейшей частью человеческой культуры. Она сопровождает человека от рождения и до смерти.
Наиболее ранними считаются ударные инструменты. Они возникли у первобытных народов, сопровождавших свои пляски ударами камней или кусков дерева друг о друга. Подобным образом происходит извлечение звуков у современных кастаньет, которые напоминают по форме раковины и соединяются попарно шнурками или деревянными рукоятками. Первые кастаньеты изготавливались из каштана, отсюда и название. Сейчас кастаньеты изготавливаются из твердых пород дерева: черного, самшита, кокосовой пальмы.
Было замечено, что звук можно сделать более гулким и сильным, натянув кожу на полый деревянный или глиняный предмет. Так появились предки современных барабанов и литавр.
Современный барабан представляет собой полый корпус или раму, на которые с одного или обеих сторон натянута кожа. Звук извлекается ударом по мембране или трением. В современных оркестрах применяют большой и малый барабаны. На большом играют колотушкой с мягким наконечником. Малый имеет более низкий корпус, поверх нижней мембраны натянуты струны, делающие звук сухим и трескучим. На нем играют двумя деревянными палочками с утолщениями на концах.
Первые литавры представляли собой полый сосуд, отверстие которого затянуто кожей. Они были распространены в Индии, Африке, у славянских народов. От них произошли современные литавры, ставшие еще в XVII в. первыми ударными инструментами в оркестре. Сейчас литавры представляют собой большие медные котлы, верх которых затянут кожей. Высоту звука можно регулировать, изменяя натяжение кожи при помощи винтов. На литаврах играют палочками, обтянутыми войлоком.
Бубен представляет собой обруч с погремушками, с одной стороны на него натянута кожа, с другой могут быть прикреплены струны с бубенчиками. На нем играют, потряхивая или ударяя по коже и обручу.
Одним из самых древних инструментов являются тарелки. Это плоские металлические пластинки, звук из которых извлекаются ударом друг о друга, палочкой от барабана, металлической метелкой.
Треугольник сделан из стального прута. Он подвешивается к пульту, и по нему ударяют металлической палочкой.
Если вышеперечисленные ударные инструменты обычно имеют одну высоту звука, то ксилофоны и колокольчики могут издавать различный по высоте звук. Ксилофон представляет собой набор деревянных брусков. На них играют при помощи деревянных палочек. Ксилофон издает сухой звонкий щелкающий звук. Его диапазон – от «до» первой до «до» четвертой октавы.
Колокольчики – набор металлических пластин разной формы, закрепленных на деревянных брусках. На них можно играть палочками или молоточками. Иногда в них используется клавиатура.
Струнные инструменты произошли от охотничьего лука. Постепенно к одной струне-тетиве стали добавлять другие разной длины и толщины, натягивавшиеся с различной силой. Это позволяло извлекать звуки разной высоты.
Примером такого музыкального инструмента является лира, которая была известна еще в Древнем Египте и Греции. Она состояла из фигурной изогнутой рамы, скрепленной сверху перекладиной, к которой тянулись струны. Лиру держали левой рукой, в правой держали плектр, которым извлекались звуки. Родственным лире инструментом была кифара.
Современным представителем этой линии струнных инструментов является арфа. Она появилась еще в древности, была популярна в Древнем Египте, Финикии, Греции, Риме. В Средние века она получила