у. На обратном пути теплоход плывёт против течения, т. е. со скоростью xу. Как известно, расстояние равно произведению скорости на время. Зная, что теплоход проделывал один и тот же путь за 5 и за 7 суток, можно составить уравнение:

5 (x + у) = 7 (xу).

Преобразуем:

5x + 5у = 7x – 7у,

7у + 5у = 7x – 5x,

12у = 2x,

6у = x.

Как видим, собственная скорость теплохода в 6 раз больше скорости реки. Значит, по течению (от Нижнего Новгорода до Астрахани) он плывёт со скоростью в 7 раз большей скорости реки, ведь в этом случае скорости теплохода и реки складываются. Поскольку плот плывёт только по течению, то его скорость равна скорости реки, а значит, она в 7 раз меньше, чем скорость теплохода на пути в Астрахань. Следовательно, и времени на тот же путь плот затратит в 7 раз больше, чем теплоход: 5 · 7 = 35.

Ответ: расстояние от Нижнего Новгорода до Астрахани плот пройдёт за 35 суток.

57. Можно сходу ответить, что 12 куриц за 12 дней снесут 12 яиц.

Однако это не так. Если три курицы за три дня несут три яйца, значит одна курица за те же три дня несёт одно яйцо. Следовательно, за 12 дней она снесёт: 12 : 3 = 4 яйца. Если же куриц будет 12, то за 12 дней они снесут: 12 · 4 = 48 яиц.

58. 111 – 11 = 100.

59. Конечно же, это рассуждение не верно. Видимость его правильности и убедительности создаётся за счёт того, что в нём почти незаметно смешиваются и подменяются понятия «сутки» и «день», а вернее – «рабочий день». А это совершенно разные понятия, ведь сутки – это 24 ч, а рабочий день – это 8 ч. В году 365 суток, и это то время, в которое мы и работаем, и отдыхаем, и спим. В рассуждении же понятие «365 суток» подменяется понятием «365 дней», и предполагается, что все эти дни (а на самом деле – сутки) заняты только работой. Далее из этих «365 дней» вычитается время, затрачиваемое на сон, на отдых и т. д., а это время надо вычитать не из дней (причём рабочих дней), а из суток. Тогда количество дней (рабочих) останется прежним, и недоразумения не возникнет.

60. Надо взять второй наполненный стакан слева и перелить его во второй пустой стакан справа, тогда наполненные и пустые стаканы будут чередоваться:

61. Рассуждение неверно. Говорить о том, что большее число рабочих смогут построить дом намного быстрее, можно только в пределах целых дней, т. е. если измерять время работы днями. Если же измерять это время часами, а тем более минутами и секундами, то данная закономерность (больше рабочих – быстрее работа) не действует. Ошибка рассуждения заключается в том, что в нём смешиваются различные понятия, обозначающие разные временные интервалы. Понятие «день» почти незаметно подменяется понятиями «час», «минута», «секунда», за счёт чего и создаётся видимость правильности и доказанности данного рассуждения.

62. Это слово «неправильно». Оно всегда так и пишется – «неправильно». Эффект этой задачи-шутки заключается в том, что в ней слово «неправильно» употребляется в двух разных смыслах.

63. Попугай действительно может повторять каждое услышанное слово, но он глух и не слышит ни одного слова.

64. Конечно же, спичку, так как без неё нельзя зажечь ни свечу, ни керосиновую лампу. Вопрос задачи двусмыслен, ведь его можно понимать то ли как выбор между свечой и керосиновой лампой, то ли как последовательность в зажигании чего-либо (сначала спичка, потом – от неё – всё остальное).

65. Может показаться, что Пётр будет спать 14 ч, но на самом деле он сможет поспать всего 2 ч, потому что будильник прозвонит в девять часов вечера. Простой механический будильник не различает дня и ночи и всегда звонит в то время, на которое его поставили.

Если бы это был электронный будильник компьютерного типа, который можно программировать, тогда Петру удалось бы проспать с 7 ч вечера до 9 ч утра.

66. Логическая закономерность, что отрицание истины является ложью, а отрицание лжи – истиной, действует только тогда, когда речь идёт об одном и том же предмете. В данном случае речь должна идти об одном и том же предложении. Если бы это было так, то одно утверждение обязательно было бы истинным, а другое ложным, или наоборот. Но в задаче речь идёт о двух разных предложениях. Поэтому нет ничего удивительного в том, что они оба являются ложными.

67. Сумма восьми цифр, равная двум может получиться в том случае, если одна из этих цифр двойка, а остальные – нули. Такое восьмизначное число только одно. Это 20 000 000. Но сумма восьми цифр, равная двум, также может получиться в том случае, если две из этих цифр единицы, а остальные нули. Таких восьмизначных чисел семь: 11 000 000, 10 100 000, 10 010 000, 10 001 000, 10 000 100, 10 000 010, 10 000 001.

О т в е т: существует восемь восьмизначных чисел, сумма цифр которых равна двум.

68. Периметр фигуры – это сумма длин всех её сторон. В данной фигуре 12 сторон. Если её периметр равен 6, то одна сторона равна: 6 : 12 = 0,5. Фигура состоит из 5 одинаковых квадратов, со стороной 0,5. Площадь одного квадрата равна: 0,5 · 0,5 = 0,25. Следовательно, площадь всей фигуры равна: 0,25 · 5 = 1,25.

69. Затруднение при решении может возникнуть из-за необычно сформулированного условия задачи. Сама же задача очень проста.

Требуется всего лишь записать математически то, что выражено в ней словами, т. е. распутать её словесное условие. Сумма квадратов чисел 2 и 3 – это: 22 + 32. Куб суммы квадратов чисел 2 и 3 – это: (22 + 32)3.

Сумма кубов этих чисел – это: 23 + 33. Квадрат этой суммы – это: (23 + 33)2. Надо найти разность первого и второго: (22 + 32)3 – (23 + 33)2 = (4 + 9)3 – (8 + 27) 2 = 133 – 352 = 2 197 – 1 225 = 972.

70. Это число 2. Половина этого числа равна 1, а половина от половины этого числа (т. е. единицы) равна 0,5, т. е. тоже половине.

71. Рассуждение неверно. Совершено необязательно, что Саша Иванов со временем побывает на Марсе. Внешняя правильность этого рассуждения создаётся за счёт употребления в нём одного слова («человек») в двух разных смыслах: в широком (абстрактный представитель человечества) и в узком (конкретный, данный, именно этот человек).

72. Как видим по условию, для получения оранжевой краски требуется в три раза больше жёлтой краски, чем красной: 6 : 2 = 3. Значит из имеющегося количества жёлтой и красной красок надо взять в три раза больше жёлтой краски, чем красной, т. е. 3 г жёлтой и 1 г красной.

О т в е т: можно получить 4 г оранжевой краски.

73.

Можно убрать и другие 2 спички.

74. Надо поставить запятую: 5 < 5 , 6 < 6.

75. Сначала надо выяснить, каков общий возраст всех игроков команды: 22 · 11 = 242. Возраст выбывшего игрока примем за x. После того, как он выбыл общий возраст игроков команды стал равен: 242 – x. Поскольку игроков стало 10 и их средний возраст известен (21 год), можно составить уравнение:

(242 – x) : 10 = 21,

242 – x = 210,

x = 242 – 210 = 32.

Ответ: выбывшему игроку 32 года.

76. Рассуждение, конечно же, неверно. Эффект его внешней правильности достигается благодаря употреблению понятия «возраст отца» в двух разных смыслах: возраст отца как возраст человека, который является этим отцом, и возраст отца как число лет отцовства. Кстати, во втором значении понятие «возраст», как правило, не употребляется: обычно под словосочетанием «возраст отца» понимается возраст этого человека, а не что-либо иное.

77. Сначала надо разделить 24 кг гвоздей на две равные части по 12 кг, уравновесив их на чашах весов. Затем так же разделить 12 кг гвоздей на две равные части по 6 кг. После этого отложить одну часть, а другую разделить таким же способом на части по 3 кг. Наконец к шестикилограммовой части гвоздей добавить эти 3 кг. В результате получится 9 кг гвоздей.

78. Это был четверг. В этот день Пётр правдиво сказал, что вчера (т. е. в среду) он лгал, а Иван солгал насчёт того, что вчера (т. е. в среду) он лгал, ведь по условию в среду он говорит правду.

79. Это число 147.

80.

81. В 1 001 раз. Для того чтобы установить это, надо шестизначное число, полученное путём дублирования трёхзначного числа, разделить на это трёхзначное число, получится 1 001 (см. также задачу 51).

82. Ошибка данного рассуждения заключается в утверждении, что если бы не было времени, то не было бы ни одного дня, а значит, всегда стояла бы ночь. Как раз наоборот – если бы не было времени, то не могло бы быть ни одного дня и ни одной ночи, ведь понятие ночи (как и понятие дня) относится именно ко времени (и день, и ночь – это некие временные интервалы).

83. Примем число яблок, которые взяла Настя из первой корзины, за x, тогда в первой корзине осталось: 12 – x яблок. Именно столько яблок и взяла Маша из второй корзины. Значит во второй корзине осталось: 12 – (12 – x) яблок. В двух корзинах вместе осталось: (12 – x) + 12 – (12 – x) = 12 – x + 12 – 12 + x = 12.

Ответ: в двух корзинах вместе осталось 12 яблок.

84. Этого не может сказать ни одна свинья, ведь свиньи, как известно, не говорят. Эта не очень серьёзная задача основана на двусмысленности вопроса: «Сколько свиней могут сказать…?» Слово «сказать» в этом вопросе можно понимать буквально – говорить членораздельной человеческой речью, а также его можно воспринимать в переносном значении – кто-то говорит от имени или за тех, которые сами говорить не могут (не умеют).

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату